2026-02-13 11:52:58 -05:00

48 lines
1.0 KiB
Markdown

# Monte Carlo Integration
$$I = \int_a^b f(x) \, dx$$
---
## Riemann Integration
Pick $x_i = hi + a$
$$I = \sum_{i=1}^{n} f(x_i) \frac{b-a}{n}$$
This isn't the only way to integrate.
---
## Monte Carlo Integration
Sample $X \sim U[a,b]$
$$\hat{I} = \frac{b-a}{n} \sum_{i=1}^{n} f(x_i)$$
> *This is technically a random variable.*
### Expectation of the Estimator
$$E\{f(x)\} = \int_a^b f(x) \cdot U[a,b] \, dx = \int_a^b f(x) \frac{1}{b-a} \, dx = \frac{1}{b-a} \int_a^b f(x) \, dx$$
$$E\{\hat{I}\} = \frac{b-a}{n} \sum_{i=1}^{n} E\{f(x)\}$$
$$= \frac{b-a}{n} \sum_{i=1}^{n} \left( \frac{1}{b-a} \int_a^b f(x) \, dx \right)$$
$$= \frac{b-a}{n} \cdot \frac{n}{b-a} \int_a^b f(x) \, dx$$
$$E\{\hat{I}\} = \int_a^b f(x) \, dx$$
**Key insight:** The Monte Carlo estimator is unbiased — its expected value equals the true integral.
---
## Multi-Dimensional Case
$$I = \iiint f(\vec{x}) \, d\vec{x}$$
$$\hat{I} = \frac{V}{n} \sum_{i=1}^{n} f(\vec{x}_i)$$
where $V$ is the volume of the integration region.