# Monte Carlo Integration $$I = \int_a^b f(x) \, dx$$ --- ## Riemann Integration Pick $x_i = hi + a$ $$I = \sum_{i=1}^{n} f(x_i) \frac{b-a}{n}$$ This isn't the only way to integrate. --- ## Monte Carlo Integration Sample $X \sim U[a,b]$ $$\hat{I} = \frac{b-a}{n} \sum_{i=1}^{n} f(x_i)$$ > *This is technically a random variable.* ### Expectation of the Estimator $$E\{f(x)\} = \int_a^b f(x) \cdot U[a,b] \, dx = \int_a^b f(x) \frac{1}{b-a} \, dx = \frac{1}{b-a} \int_a^b f(x) \, dx$$ $$E\{\hat{I}\} = \frac{b-a}{n} \sum_{i=1}^{n} E\{f(x)\}$$ $$= \frac{b-a}{n} \sum_{i=1}^{n} \left( \frac{1}{b-a} \int_a^b f(x) \, dx \right)$$ $$= \frac{b-a}{n} \cdot \frac{n}{b-a} \int_a^b f(x) \, dx$$ $$E\{\hat{I}\} = \int_a^b f(x) \, dx$$ **Key insight:** The Monte Carlo estimator is unbiased — its expected value equals the true integral. --- ## Multi-Dimensional Case $$I = \iiint f(\vec{x}) \, d\vec{x}$$ $$\hat{I} = \frac{V}{n} \sum_{i=1}^{n} f(\vec{x}_i)$$ where $V$ is the volume of the integration region.