2026-02-13 11:52:58 -05:00

1.0 KiB

Monte Carlo Integration

I = \int_a^b f(x) \, dx

Riemann Integration

Pick x_i = hi + a

I = \sum_{i=1}^{n} f(x_i) \frac{b-a}{n}

This isn't the only way to integrate.


Monte Carlo Integration

Sample X \sim U[a,b]

\hat{I} = \frac{b-a}{n} \sum_{i=1}^{n} f(x_i)

This is technically a random variable.

Expectation of the Estimator

E\{f(x)\} = \int_a^b f(x) \cdot U[a,b] \, dx = \int_a^b f(x) \frac{1}{b-a} \, dx = \frac{1}{b-a} \int_a^b f(x) \, dx E\{\hat{I}\} = \frac{b-a}{n} \sum_{i=1}^{n} E\{f(x)\} = \frac{b-a}{n} \sum_{i=1}^{n} \left( \frac{1}{b-a} \int_a^b f(x) \, dx \right) = \frac{b-a}{n} \cdot \frac{n}{b-a} \int_a^b f(x) \, dx E\{\hat{I}\} = \int_a^b f(x) \, dx

Key insight: The Monte Carlo estimator is unbiased — its expected value equals the true integral.


Multi-Dimensional Case

I = \iiint f(\vec{x}) \, d\vec{x} \hat{I} = \frac{V}{n} \sum_{i=1}^{n} f(\vec{x}_i)

where V is the volume of the integration region.