vault backup: 2024-09-30 13:20:38
This commit is contained in:
parent
c5a6542e14
commit
fd7430afea
@ -35,3 +35,7 @@ $\alpha e^{\alpha x} y + 2 y e^{\alpha x} - e^{\alpha x}$
|
|||||||
$e^{\alpha x}((\alpha+2) y -1)$
|
$e^{\alpha x}((\alpha+2) y -1)$
|
||||||
Now let $\alpha = -2$
|
Now let $\alpha = -2$
|
||||||
$\nabla \cdot (\zeta f) = e^{-2 x}$
|
$\nabla \cdot (\zeta f) = e^{-2 x}$
|
||||||
|
|
||||||
|
Now a special note: These functions can define where limit cycles can't be. If the function doesn't change sign for a subset of R, there can't be a limit cycle contained in that subset. There CAN be a limit cycle that crosses the point the function changes sign.
|
||||||
|
### Lyapunov Function
|
||||||
|
Aleksander Lyapunov (Liapunov)
|
||||||
Loading…
x
Reference in New Issue
Block a user