vault backup: 2024-09-30 13:15:33
This commit is contained in:
parent
2181ba07ba
commit
c5a6542e14
@ -20,3 +20,18 @@ $$ \dot{\vec{x}}= f(\vec x)$$
|
||||
$$ \frac{\partial}{\partial x} (\zeta(x,y) f_1(x,y)) + \frac{\partial}{\partial y}(\zeta(x,y) f_2(x,y))$$
|
||||
is of constant sign, then there are no closed orbits in R.
|
||||
<mark style="background: #FFF3A3A6;">Finding $\zeta$ is tricky.</mark>
|
||||
|
||||
Example:
|
||||
$\dot x = y$
|
||||
$\dot y = -x -y + x^2 + y^2$
|
||||
|
||||
Assume $\zeta(x,y) = 1$
|
||||
$\partial / \partial x (y) + \partial / \partial y (-x - y +x^2 +y^2) /rightarrow 0 + (-1+2y)$
|
||||
|
||||
Assume $\zeta(x,y) = e^{\alpha x}$
|
||||
|
||||
$\partial / \partial x (e^{\alpha x} y) + \partial / \partial y (e^{\alpha x} (-x - y +x^2 +y^2))$
|
||||
$\alpha e^{\alpha x} y + 2 y e^{\alpha x} - e^{\alpha x}$
|
||||
$e^{\alpha x}((\alpha+2) y -1)$
|
||||
Now let $\alpha = -2$
|
||||
$\nabla \cdot (\zeta f) = e^{-2 x}$
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user