vault backup: 2024-09-30 13:15:33

This commit is contained in:
Dane Sabo 2024-09-30 13:15:33 -04:00
parent 2181ba07ba
commit c5a6542e14

View File

@ -20,3 +20,18 @@ $$ \dot{\vec{x}}= f(\vec x)$$
$$ \frac{\partial}{\partial x} (\zeta(x,y) f_1(x,y)) + \frac{\partial}{\partial y}(\zeta(x,y) f_2(x,y))$$
is of constant sign, then there are no closed orbits in R.
<mark style="background: #FFF3A3A6;">Finding $\zeta$ is tricky.</mark>
Example:
$\dot x = y$
$\dot y = -x -y + x^2 + y^2$
Assume $\zeta(x,y) = 1$
$\partial / \partial x (y) + \partial / \partial y (-x - y +x^2 +y^2) /rightarrow 0 + (-1+2y)$
Assume $\zeta(x,y) = e^{\alpha x}$
$\partial / \partial x (e^{\alpha x} y) + \partial / \partial y (e^{\alpha x} (-x - y +x^2 +y^2))$
$\alpha e^{\alpha x} y + 2 y e^{\alpha x} - e^{\alpha x}$
$e^{\alpha x}((\alpha+2) y -1)$
Now let $\alpha = -2$
$\nabla \cdot (\zeta f) = e^{-2 x}$