2026-02-13 11:52:58 -05:00

38 lines
839 B
Markdown

# Joint Distributions
**Source:** probabilitycourse.com
Joint distributions are **multivariate probability distributions**.
---
## Conditional Probability
$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \text{ when } P(B) > 0$$
### Example: Fair Die
If this is a fair die, what's the PMF of the outcomes given the event $A = \{x < 5\}$?
$$P(A) = \frac{4}{6}$$
$$P_{X|A}(1) = \frac{P(X = 1 \cap x < 5)}{P(x < 5)} = \frac{\frac{1}{6}}{\frac{4}{6}} = \frac{1}{4}$$
$$P_{X|A}(2) = P_{X|A}(3) = P_{X|A}(4) = P_{X|A}(1) = \frac{1}{4}$$
$$P_{X|A}(5) = \frac{P(x = 5 \cap x < 5)}{P(x < 5)} = \frac{0}{\frac{4}{6}} = 0$$
$$P_{X|A}(6) = 0$$
---
## Two Random Variables
When working with two random variables:
$$P_{X|Y}(x_i | y_j) = P(X = x_i | Y = y_j)$$
$$= \frac{P(X = x_i \cap Y = y_j)}{P_Y(y_j)}$$
$$= \frac{P_{XY}(x_i, y_j)}{P_Y(y_j)}$$