Dane Sabo dfca8eab77 Auto sync: 2025-12-09 17:19:30 (20 files changed)
M  .task/backlog.data

M  .task/completed.data

M  .task/pending.data

M  .task/undo.data

A  Class_Work/nuce2101/final/latex/SABO_NUCE2101_FINAL.pdf

M  Class_Work/nuce2101/final/latex/main.aux

M  Class_Work/nuce2101/final/latex/main.fdb_latexmk

M  Class_Work/nuce2101/final/latex/main.fls
2025-12-09 17:19:30 -05:00

71 lines
3.0 KiB
TeX

\section*{Problem 8}
\subsection*{Part A}
The one delayed-group model assumes all six precursor groups can be lumped into
a single effective group with average parameters. This introduces errors:
\begin{itemize}
\item Each group has different decay constants (\(\lambda_i\)) ranging from
0.012 to 3.01 s\(^{-1}\), corresponding to half-lives from 0.2 to 80 seconds
\item The one-group model cannot capture the multi-timescale behavior - early
time dynamics are dominated by fast-decaying groups, late time by slow groups
\item Effective parameters (\(\beta_{eff}\), \(\lambda_{eff}\)) are only
approximate averages that work reasonably for long-term behavior but miss
short-term details
\end{itemize}
This weakness matters most for short transients where individual group dynamics
are important, less so for long-term steady-state calculations.
\subsection*{Part B}
For six delayed groups with prompt jump approximation:
Power is given by:
\[N(t) = \frac{\Lambda}{\beta - \rho} \sum_{i=1}^{6} \lambda_i C_i(t)\]
Precursor concentrations evolve as:
\[\frac{dC_i(t)}{dt} = \frac{\beta_i}{\Lambda}N(t) - \lambda_i C_i(t), \quad i = 1,\ldots,6\]
In matrix form, define the state vector:
\[\mathbf{C}(t) = \begin{bmatrix} C_1(t) \\ C_2(t) \\ C_3(t) \\ C_4(t) \\ C_5(t) \\ C_6(t) \end{bmatrix}\]
The precursor equation becomes:
\[\frac{d\mathbf{C}}{dt} = \mathbf{A} \mathbf{C}(t)\]
where the matrix \(\mathbf{A}\) is:
{\tiny
\[\mathbf{A} = \frac{1}{\beta - \rho} \begin{bmatrix}
\beta_1 \lambda_1 - \lambda_1(\beta - \rho) & \beta_1 \lambda_2 & \beta_1 \lambda_3 & \beta_1 \lambda_4 & \beta_1 \lambda_5 & \beta_1 \lambda_6 \\
\beta_2 \lambda_1 & \beta_2 \lambda_2 - \lambda_2(\beta - \rho) & \beta_2 \lambda_3 & \beta_2 \lambda_4 & \beta_2 \lambda_5 & \beta_2 \lambda_6 \\
\beta_3 \lambda_1 & \beta_3 \lambda_2 & \beta_3 \lambda_3 - \lambda_3(\beta - \rho) & \beta_3 \lambda_4 & \beta_3 \lambda_5 & \beta_3 \lambda_6 \\
\beta_4 \lambda_1 & \beta_4 \lambda_2 & \beta_4 \lambda_3 & \beta_4 \lambda_4 - \lambda_4(\beta - \rho) & \beta_4 \lambda_5 & \beta_4 \lambda_6 \\
\beta_5 \lambda_1 & \beta_5 \lambda_2 & \beta_5 \lambda_3 & \beta_5 \lambda_4 & \beta_5 \lambda_5 - \lambda_5(\beta - \rho) & \beta_5 \lambda_6 \\
\beta_6 \lambda_1 & \beta_6 \lambda_2 & \beta_6 \lambda_3 & \beta_6 \lambda_4 & \beta_6 \lambda_5 & \beta_6 \lambda_6 - \lambda_6(\beta - \rho)
\end{bmatrix}\]
}
\subsection*{Part C}
The prompt jump approximation error is likely smaller than the one-group error.
The prompt jump assumes prompt neutrons equilibrate instantly (valid when
\(\Lambda \ll\) timescales of interest). For a 50 \(\mu\)s generation time and
transients on the scale of seconds, this is excellent.
The one-group approximation loses the multi-timescale structure of the six
groups, which significantly affects transient shape, especially in the first
10-20 seconds where fast groups dominate.
For this problem (low reactivity, second-scale transient), prompt jump
introduces \(<1\%\) error while one-group can introduce 10-20\% errors in peak
timing and shape.