\section*{Problem 8} \subsection*{Part A} The one delayed-group model assumes all six precursor groups can be lumped into a single effective group with average parameters. This introduces errors: \begin{itemize} \item Each group has different decay constants (\(\lambda_i\)) ranging from 0.012 to 3.01 s\(^{-1}\), corresponding to half-lives from 0.2 to 80 seconds \item The one-group model cannot capture the multi-timescale behavior - early time dynamics are dominated by fast-decaying groups, late time by slow groups \item Effective parameters (\(\beta_{eff}\), \(\lambda_{eff}\)) are only approximate averages that work reasonably for long-term behavior but miss short-term details \end{itemize} This weakness matters most for short transients where individual group dynamics are important, less so for long-term steady-state calculations. \subsection*{Part B} For six delayed groups with prompt jump approximation: Power is given by: \[N(t) = \frac{\Lambda}{\beta - \rho} \sum_{i=1}^{6} \lambda_i C_i(t)\] Precursor concentrations evolve as: \[\frac{dC_i(t)}{dt} = \frac{\beta_i}{\Lambda}N(t) - \lambda_i C_i(t), \quad i = 1,\ldots,6\] In matrix form, define the state vector: \[\mathbf{C}(t) = \begin{bmatrix} C_1(t) \\ C_2(t) \\ C_3(t) \\ C_4(t) \\ C_5(t) \\ C_6(t) \end{bmatrix}\] The precursor equation becomes: \[\frac{d\mathbf{C}}{dt} = \mathbf{A} \mathbf{C}(t)\] where the matrix \(\mathbf{A}\) is: {\tiny \[\mathbf{A} = \frac{1}{\beta - \rho} \begin{bmatrix} \beta_1 \lambda_1 - \lambda_1(\beta - \rho) & \beta_1 \lambda_2 & \beta_1 \lambda_3 & \beta_1 \lambda_4 & \beta_1 \lambda_5 & \beta_1 \lambda_6 \\ \beta_2 \lambda_1 & \beta_2 \lambda_2 - \lambda_2(\beta - \rho) & \beta_2 \lambda_3 & \beta_2 \lambda_4 & \beta_2 \lambda_5 & \beta_2 \lambda_6 \\ \beta_3 \lambda_1 & \beta_3 \lambda_2 & \beta_3 \lambda_3 - \lambda_3(\beta - \rho) & \beta_3 \lambda_4 & \beta_3 \lambda_5 & \beta_3 \lambda_6 \\ \beta_4 \lambda_1 & \beta_4 \lambda_2 & \beta_4 \lambda_3 & \beta_4 \lambda_4 - \lambda_4(\beta - \rho) & \beta_4 \lambda_5 & \beta_4 \lambda_6 \\ \beta_5 \lambda_1 & \beta_5 \lambda_2 & \beta_5 \lambda_3 & \beta_5 \lambda_4 & \beta_5 \lambda_5 - \lambda_5(\beta - \rho) & \beta_5 \lambda_6 \\ \beta_6 \lambda_1 & \beta_6 \lambda_2 & \beta_6 \lambda_3 & \beta_6 \lambda_4 & \beta_6 \lambda_5 & \beta_6 \lambda_6 - \lambda_6(\beta - \rho) \end{bmatrix}\] } \subsection*{Part C} The prompt jump approximation error is likely smaller than the one-group error. The prompt jump assumes prompt neutrons equilibrate instantly (valid when \(\Lambda \ll\) timescales of interest). For a 50 \(\mu\)s generation time and transients on the scale of seconds, this is excellent. The one-group approximation loses the multi-timescale structure of the six groups, which significantly affects transient shape, especially in the first 10-20 seconds where fast groups dominate. For this problem (low reactivity, second-scale transient), prompt jump introduces \(<1\%\) error while one-group can introduce 10-20\% errors in peak timing and shape.