Obsidian/Zettelkasten/Permanent Notes/20250829114522-hybrid-systems.md
Dane Sabo d46beb2b0f Auto sync: 2025-09-14 20:27:41 (8 files changed)
M  .task/backlog.data

M  .task/completed.data

M  .task/pending.data

M  .task/undo.data

M  "Zettelkasten/Permanent Notes/20250829114522-hybrid-systems.md"

A  "Zettelkasten/Permanent Notes/20250911165736-switched-systems.md"

A  "Zettelkasten/Permanent Notes/20250911170650-lipschitz-continuous.md"

M  "Zettelkasten/Permanent Notes/Literature Notes/LIT-20250911143337-multiple-lyapunov-functions-and-other-analysis-tools-for-swtiched-and-hybrid-systems.md"
2025-09-14 20:27:41 -04:00

58 lines
1.4 KiB
Markdown

---
id: 20250829114522
title: Hybrid Systems
type: permanent
created: 2025-08-29T15:45:22Z
modified: 2025-09-11T21:46:53Z
tags: []
---
# Hybrid Systems
I'm borrowing a lot from
[[multiple-lyapunov-functions-and-other-analysis-tools-for-swtiched-and-hybrid-systems]].
Hybrid systems are those that combine continuous and
discrete dynamics together. This is usually some sort of
finite automata + differential equations.
Hybrid systems can be written like:
$$\dot{x}(t) = \xi(t), \quad t\geq 0$$
where $x(t)$ is the continuous component of the state.
$\xi(t)$ is a vector field that depends on $x(t)$ and the
hybrid dynamics.
Switching between modes (aka discontinuities in $\xi(\cdot)$)
can happen in one of two ways:
1. **Autonomous Switching** - Autonomous switches happen
depending on state values of $x(t)$.
2. **Controlled Switching** - $\xi(\cdot)$ changes abruptly
in response to a control command.
One may write a continuous time autonomous hybrid system
like this:
$$\dot{x}(t) = f(x(t), q(t))$$
$$q(t) = \nu(x(t), q(t^-))$$
where:
- $x(t) \in R^n$
- $q(t) \in Q \simeq {1,...,N}$
- $f(\cdot,q): R^n \rightarrow R^n,q \in Q$, with each
[[lipschitz-continuous]]. These are the *continuous
dynamics*.
- $\nu: R^n \times Q \rightarrow Q$ is the *finite dynamics*
A controlled system might be written as:
$$\dot{x}(t) = f(x(t), q(t), u(t))$$
$$q(t) = \nu(x(t), q(t^-), u(t))$$
where:
- $u(t) \in R^m$