1.4 KiB
1.4 KiB
Chapter 1:
- r - reference or command input
- e - tracking error
- u - control signal, controller output
- d - plant distrurbance
- y - plant output
- n - sensor
Chapter 2 - Norms
[!note] Signal Norms 1-Norm:
||u||_1 = \int_{-\infty}^{\infty} |u(t)|dt2-Norm:
||u||_2 = \left(\int_{-\infty}^{\infty} u(t)^2 dt \right)^{1/2}$\infty$-Norm
||u||_\infty = \sup_t |u(t)|Power Signals (Not really a norm):
pow(u) = \left( \lim_{T\rightarrow \infty} \frac{1}{2T} \int_{-T}^T u(t)^2 dt \right)^{1/2}If the limit exists, u is called a power signal
[!caution] Some Implications
||u||_2 < \infty \rightarrow pow(u) = 0- u is a power signal and
||u||_\infty < \infty \rightarrow pow(u) \leq ||u||_\infty- There's a third one in the book about the one norm. I'm ignoring it.
[!nnote] System Norms
\hat Gmeans the transfer functionGin the frequency domain. 2-Norm:||\hat G||_2 = \left(\frac{1}{2\pi} \int_{-\infty}^\infty |\hat G(j\omega)|^2d\omega \right) ^{1/2}$\infty$-norm
||\hat G||_\infty = \sup_{\omega} |\hat G(j\omega)|[!hint] Parseval's Theorem If
\hat Gis stable, then||\hat G||_2 = \left(\frac{1}{2\pi} \int_{-\infty}^\infty |\hat G(j\omega)|^2d\omega \right) ^{1/2} = \left( \int_{\infty}^\infty |G(t)|^2 dt \right)^{1/2}

