2.3 KiB
ME2046_Sampled_Data_Analysis_Reading_Chapter_2pdf2254ME
Impulse Sampling
How do we represent a sequence of numbers? Impulse sampling does it by
- having a continuous signal
- having an impulse train (impulses at sampling frequency)
- multiply em together
[!info] Functionals Laurent Schwartz (1950):
\int_{-\infty}^\infty \phi(x) f(x) dx = zShift Property:
\int_{-\infty}^\infty \phi(t-\tau) f(t) dx = FINISHLaplace Transform
Pulse Train $\delta_t(t)$
\delta_T(t) = \sum_{k=-\infty}^\infty \delta(t-kT)
x^*(t) = x(t)\delta_T(t) = \sum_{k=-\infty}^\infty x(t)\delta(t-kT)
Where the sampled signal is x^*
What about in Laplace domain?
X^*(t) = \int \left[ \sum_{k=-\infty}^\infty x(t)\delta(t-kT)\right] e^{-st} dt
X^*(t) =\sum_{k=-\infty}^\infty \left[\int x(t)\delta(t-kT) e^{-st} \right] dt
X^*(t) =\sum_{k=-\infty}^\infty \left[\int x(t)e^{-st} \delta(t-kT) \right] dt
Now using the shift property...
X^*(t) =\sum_{k=-\infty}^\infty x(kT)e^{-kTs}
Some Observations
If we change the variable z = e^{Ts}
[!important] The Z-Transform
X^*(t) = X(z) = \sum_{k=-\infty}^\infty x(kT) z^{-k}Z transform can be viewed as short hand of the Laplace transform
Sampling is a time varying process. If x(t) is time shifted by a small amount, the sampled signal x(kT) will be different.
Frequency Domain Interpretation
\delta_T(t) is periodic, so we can turn it into a Fourier series...
\delta_T(t) = \sum_{N=-\infty}^N C_N e^{j(\frac{2\pi}{T})Nt}
C_n = \frac{1}{T}\int_{-T/2}^{T/2} \delta_T(t) e^{-j(\frac{2\pi}{T})Nt} dt
Apply a shift and do some stuff...
C_n = \frac{1}{T} \int_{-T/2}^{T/2} e^{-j \frac{2\pi}{T} Nt} dt
C_n = \frac{1}{T}
So then...
\delta_T(t) = \frac{1}{T} \sum_{N=-\infty}^N e^{j(\frac{2\pi}{T})Nt}
\delta_T(t) = \frac{1}{T} \sum_{N=-\infty}^N e^{j \omega_s T Nt}
Insert Steps from Class to get to $X^*(Z)$
The spectrum of the sampled signal is also a periodic function of frequency with period \omega_s.
!
A lot of times, we need to filter the high frequency stuff out, or else we'll get some issues with aliasing.
Band Limited |X(j\omega)|=0 \forall |\omega|>\omega_0

