vault backup: 2024-10-16 10:13:32
This commit is contained in:
parent
c2d4a5b7fb
commit
bf258ca6d9
@ -1,9 +1,9 @@
|
||||
{
|
||||
"citationExportFormat": "biblatex",
|
||||
"literatureNoteTitleTemplate": "@{{citekey}}",
|
||||
"literatureNoteFolder": "201. Library Papers",
|
||||
"literatureNoteTitleTemplate": "{{citekey}}",
|
||||
"literatureNoteFolder": "201 Library Papers",
|
||||
"literatureNoteContentTemplate": "# {{title}}\n#### ({{year}}) - {{authorString}}\n**Link**:: {{URL}}\n**DOI**:: {{DOI}}\n**Links**:: \n**Tags**:: #paper\n**Cite Key**:: [@{{citekey}}]\n\n### Abstract\n\n```\n{{abstract}}\n```\n\n### Notes\n",
|
||||
"markdownCitationTemplate": "[@{{citekey}}]",
|
||||
"alternativeMarkdownCitationTemplate": "@{{citekey}}",
|
||||
"citationExportPath": "200. Library Papers/My Library.bib"
|
||||
"citationExportPath": "200 Library Papers/My Library.bib"
|
||||
}
|
||||
38
200 Library Papers/ControlTutorialsMATLAB.md
Normal file
38
200 Library Papers/ControlTutorialsMATLAB.md
Normal file
@ -0,0 +1,38 @@
|
||||
---
|
||||
readstatus: false
|
||||
dateread:
|
||||
title: "Control Tutorials for MATLAB and Simulink - Introduction: System Modeling"
|
||||
year: Error: `format` can only be applied to dates. Tried for format object
|
||||
authors:
|
||||
|
||||
citekey: "ControlTutorialsMATLAB"
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
---
|
||||
# Indexing Information
|
||||
## DOI
|
||||
[](https://doi.org/)
|
||||
## ISBN
|
||||
[](https://www.isbnsearch.org/isbn/)
|
||||
## Tags:
|
||||
|
||||
|
||||
>[!Abstract]
|
||||
>
|
||||
|
||||
>[!note] Markdown Notes
|
||||
>None!
|
||||
|
||||
>[!seealso] Related Papers
|
||||
>
|
||||
|
||||
# Annotations
|
||||
|
||||
### Imported: 2024-10-16 10:10 am
|
||||
|
||||
|
||||
@ -20,8 +20,8 @@ Robust control as a field determines how resilient a control system is to a diff
|
||||
|
||||
Robustness is dependent on two features: the characteristic to be guaranteed, and the set of reasonably possible perturbed plants $\mathcal{P}$. Usually the characteristic we're interested in is internal stability or performance. The possible set of plants, however, is less straightforward. The set $\mathcal{P}$ can be structured or unstructured. A structured set in this instance can be a discrete number of possible perturbed plants, or possibly a parametric study with a finite number of parameters. Let's consider an example.
|
||||
|
||||
Suppose a set of plants representing a spring-mass-damper system is described as follows:
|
||||
$$\mathcal{P} = \left{ \frac{}}
|
||||
Suppose a plant representing a spring-mass-damper system is described as follows:
|
||||
$$ P = \frac{X(s)}{F(s)} = \frac{1}{ms^2 + bs +k}$$
|
||||
|
||||
(The disk multiplicative perturbation)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user