vault backup: 2024-09-09 14:54:16

This commit is contained in:
Dane Sabo 2024-09-09 14:54:16 -04:00
parent 8833a5c5af
commit 4600f54a45

View File

@ -84,7 +84,42 @@ $$\frac{dV}{dt} <0 \rightarrow V \text{continuously decreasing in time until } \
- Stable fixed poitn: $V(x^\star)$ is (a local) minimum of $V(x)$ - Stable fixed poitn: $V(x^\star)$ is (a local) minimum of $V(x)$
- Unstable fixed point: $V(x^\star)$ is (a local) maximum of $V(x)$. - Unstable fixed point: $V(x^\star)$ is (a local) maximum of $V(x)$.
# A review of Linear Differential Equations # A review of Linear Differential Equations
$$\dot x = \frac{dx}{dt} = A x + F$$ ## Foundation
$$\dot{\vec{x}} = \frac{dx}{dt} = \bf{A} \vec{x} + \vec{F}$$
Homogeneous (no input/forcing): Homogeneous (no input/forcing):
$$\dot x = A x$$ $$\dot{\vec{x}} = \bf{A} \vec{x}$$
$$x(t) = C e^{At}$$ $$\vec{x}(t) = C e^{\bf{A}t}$$
This e to the matrix A is kinda gross. We represent this as follows:
$$ e^{\bf{A}} = \sum_{k=0}^\inf \frac{\bf{A}^k}{k!}$$so then:
$$ e^{\bf{A}t} = \sum_{k=0}^\inf \frac{\bf{A}^k t^k}{k!}$$
But since $\frac{d}{dt}e^{\bf{A}t} = \bf{A}e^{\bf{A}t}$
Some proof that xdot = Ax
## Diagonalization
Suppose:
$$ \dot{\vec{x}} = \bf{A}\vec{x} $$
with A diagonal. Then
$$ \dot{x}_n = a_{nn} x_n$$
This is nice. So we should try and diagonalize things...
- Find $\bf{P}$ such that $\bf P^{-1} \bf A \bf P = \bf D$
Then we have new coordinates:
- $\vec{x} = \bf{P} \vec y$
- $\vec{\dot{x}} = \bf{P} \vec{\dot{y}}$
- then $\dot{\vec{y}} = \bf{P^{-1}AP}\vec{y}$
Choose P to be column wise eigenvectors of A, with diagonal matrix D having the eigenvalues of A.
This isn't always possible.
## Fundamental Matrix
$$ e^{\bf{A}t} = \Psi(t) = \text{Fundamental matrix of } \dot{\vec{x}} = \bf{A} \vec{x}$$
How do we calculate this thing?
- series calculation of $A^m$
- Smarter computer program
- Laplace Transform
Consider: $\dot{\vec{x}} = \bf{A}\vec{x} + \vec{F}$
$$ \vec{x}(t) = \bf{\Psi} \vec{c} \leftarrow \text{autonomous}$$
or the total solution:
$$ \vec{x}(t) = \bf{\Psi} \vec{c} + \int_{t_0}^t \bf{\Psi}^{-1}(\bf{I}) \bf{F}(I)dI + \bf{\Psi}(t_0)\vec{c}$$
$$ \vec{x}(t_0) = \bf{\Psi}(t_0)\vec{c}$$
Then the solution is
$$\vec{x}(t) = e^{\bf{A}t}\vec{c} + e^{\bf{A}t} \int_{t_0}^t e^{-\bf{A}I} F(T) \delta T$$
Then using the Laplace transform:
$$e^{\bf{A}t} = \mathcal{L}^{-1} \{ (sI-\bf{A})^-1 \} $$