vault backup: 2024-09-09 14:54:16
This commit is contained in:
parent
8833a5c5af
commit
4600f54a45
@ -84,7 +84,42 @@ $$\frac{dV}{dt} <0 \rightarrow V \text{continuously decreasing in time until } \
|
|||||||
- Stable fixed poitn: $V(x^\star)$ is (a local) minimum of $V(x)$
|
- Stable fixed poitn: $V(x^\star)$ is (a local) minimum of $V(x)$
|
||||||
- Unstable fixed point: $V(x^\star)$ is (a local) maximum of $V(x)$.
|
- Unstable fixed point: $V(x^\star)$ is (a local) maximum of $V(x)$.
|
||||||
# A review of Linear Differential Equations
|
# A review of Linear Differential Equations
|
||||||
$$\dot x = \frac{dx}{dt} = A x + F$$
|
## Foundation
|
||||||
|
$$\dot{\vec{x}} = \frac{dx}{dt} = \bf{A} \vec{x} + \vec{F}$$
|
||||||
Homogeneous (no input/forcing):
|
Homogeneous (no input/forcing):
|
||||||
$$\dot x = A x$$
|
$$\dot{\vec{x}} = \bf{A} \vec{x}$$
|
||||||
$$x(t) = C e^{At}$$
|
$$\vec{x}(t) = C e^{\bf{A}t}$$
|
||||||
|
This e to the matrix A is kinda gross. We represent this as follows:
|
||||||
|
$$ e^{\bf{A}} = \sum_{k=0}^\inf \frac{\bf{A}^k}{k!}$$so then:
|
||||||
|
$$ e^{\bf{A}t} = \sum_{k=0}^\inf \frac{\bf{A}^k t^k}{k!}$$
|
||||||
|
But since $\frac{d}{dt}e^{\bf{A}t} = \bf{A}e^{\bf{A}t}$
|
||||||
|
Some proof that xdot = Ax
|
||||||
|
|
||||||
|
## Diagonalization
|
||||||
|
Suppose:
|
||||||
|
$$ \dot{\vec{x}} = \bf{A}\vec{x} $$
|
||||||
|
with A diagonal. Then
|
||||||
|
$$ \dot{x}_n = a_{nn} x_n$$
|
||||||
|
This is nice. So we should try and diagonalize things...
|
||||||
|
- Find $\bf{P}$ such that $\bf P^{-1} \bf A \bf P = \bf D$
|
||||||
|
Then we have new coordinates:
|
||||||
|
- $\vec{x} = \bf{P} \vec y$
|
||||||
|
- $\vec{\dot{x}} = \bf{P} \vec{\dot{y}}$
|
||||||
|
- then $\dot{\vec{y}} = \bf{P^{-1}AP}\vec{y}$
|
||||||
|
Choose P to be column wise eigenvectors of A, with diagonal matrix D having the eigenvalues of A.
|
||||||
|
This isn't always possible.
|
||||||
|
## Fundamental Matrix
|
||||||
|
$$ e^{\bf{A}t} = \Psi(t) = \text{Fundamental matrix of } \dot{\vec{x}} = \bf{A} \vec{x}$$
|
||||||
|
How do we calculate this thing?
|
||||||
|
- series calculation of $A^m$
|
||||||
|
- Smarter computer program
|
||||||
|
- Laplace Transform
|
||||||
|
Consider: $\dot{\vec{x}} = \bf{A}\vec{x} + \vec{F}$
|
||||||
|
$$ \vec{x}(t) = \bf{\Psi} \vec{c} \leftarrow \text{autonomous}$$
|
||||||
|
or the total solution:
|
||||||
|
$$ \vec{x}(t) = \bf{\Psi} \vec{c} + \int_{t_0}^t \bf{\Psi}^{-1}(\bf{I}) \bf{F}(I)dI + \bf{\Psi}(t_0)\vec{c}$$
|
||||||
|
$$ \vec{x}(t_0) = \bf{\Psi}(t_0)\vec{c}$$
|
||||||
|
Then the solution is
|
||||||
|
$$\vec{x}(t) = e^{\bf{A}t}\vec{c} + e^{\bf{A}t} \int_{t_0}^t e^{-\bf{A}I} F(T) \delta T$$
|
||||||
|
Then using the Laplace transform:
|
||||||
|
$$e^{\bf{A}t} = \mathcal{L}^{-1} \{ (sI-\bf{A})^-1 \} $$
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user