From 4600f54a45ccde53bb6ca4e170c829b97187b838 Mon Sep 17 00:00:00 2001 From: Dane Sabo Date: Mon, 9 Sep 2024 14:54:16 -0400 Subject: [PATCH] vault backup: 2024-09-09 14:54:16 --- .../2024-09-09 Frameworks and Review.md | 41 +++++++++++++++++-- 1 file changed, 38 insertions(+), 3 deletions(-) diff --git a/300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09 Frameworks and Review.md b/300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09 Frameworks and Review.md index 08960100..99d7b902 100644 --- a/300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09 Frameworks and Review.md +++ b/300s School/301. ME 2016 - Nonlinear Dynamical Systems 1/2024-09-09 Frameworks and Review.md @@ -84,7 +84,42 @@ $$\frac{dV}{dt} <0 \rightarrow V \text{continuously decreasing in time until } \ - Stable fixed poitn: $V(x^\star)$ is (a local) minimum of $V(x)$ - Unstable fixed point: $V(x^\star)$ is (a local) maximum of $V(x)$. # A review of Linear Differential Equations -$$\dot x = \frac{dx}{dt} = A x + F$$ +## Foundation +$$\dot{\vec{x}} = \frac{dx}{dt} = \bf{A} \vec{x} + \vec{F}$$ Homogeneous (no input/forcing): -$$\dot x = A x$$ -$$x(t) = C e^{At}$$ +$$\dot{\vec{x}} = \bf{A} \vec{x}$$ +$$\vec{x}(t) = C e^{\bf{A}t}$$ +This e to the matrix A is kinda gross. We represent this as follows: +$$ e^{\bf{A}} = \sum_{k=0}^\inf \frac{\bf{A}^k}{k!}$$so then: +$$ e^{\bf{A}t} = \sum_{k=0}^\inf \frac{\bf{A}^k t^k}{k!}$$ +But since $\frac{d}{dt}e^{\bf{A}t} = \bf{A}e^{\bf{A}t}$ +Some proof that xdot = Ax + +## Diagonalization +Suppose: +$$ \dot{\vec{x}} = \bf{A}\vec{x} $$ +with A diagonal. Then +$$ \dot{x}_n = a_{nn} x_n$$ +This is nice. So we should try and diagonalize things... +- Find $\bf{P}$ such that $\bf P^{-1} \bf A \bf P = \bf D$ +Then we have new coordinates: +- $\vec{x} = \bf{P} \vec y$ +- $\vec{\dot{x}} = \bf{P} \vec{\dot{y}}$ +- then $\dot{\vec{y}} = \bf{P^{-1}AP}\vec{y}$ +Choose P to be column wise eigenvectors of A, with diagonal matrix D having the eigenvalues of A. +This isn't always possible. +## Fundamental Matrix +$$ e^{\bf{A}t} = \Psi(t) = \text{Fundamental matrix of } \dot{\vec{x}} = \bf{A} \vec{x}$$ +How do we calculate this thing? +- series calculation of $A^m$ +- Smarter computer program +- Laplace Transform +Consider: $\dot{\vec{x}} = \bf{A}\vec{x} + \vec{F}$ +$$ \vec{x}(t) = \bf{\Psi} \vec{c} \leftarrow \text{autonomous}$$ +or the total solution: +$$ \vec{x}(t) = \bf{\Psi} \vec{c} + \int_{t_0}^t \bf{\Psi}^{-1}(\bf{I}) \bf{F}(I)dI + \bf{\Psi}(t_0)\vec{c}$$ +$$ \vec{x}(t_0) = \bf{\Psi}(t_0)\vec{c}$$ +Then the solution is +$$\vec{x}(t) = e^{\bf{A}t}\vec{c} + e^{\bf{A}t} \int_{t_0}^t e^{-\bf{A}I} F(T) \delta T$$ +Then using the Laplace transform: +$$e^{\bf{A}t} = \mathcal{L}^{-1} \{ (sI-\bf{A})^-1 \} $$