M Class_Work/nuce2101/final/latex/main.aux M Class_Work/nuce2101/final/latex/main.fdb_latexmk M Class_Work/nuce2101/final/latex/main.fls M Class_Work/nuce2101/final/latex/main.log M Class_Work/nuce2101/final/latex/main.pdf M Class_Work/nuce2101/final/latex/main.synctex.gz M Class_Work/nuce2101/final/latex/problem1.tex M Class_Work/nuce2101/final/latex/problem2.tex
21 lines
607 B
TeX
21 lines
607 B
TeX
\section*{Problem 2}
|
|
|
|
We can use the startup rate equation assuming \(\dot \lambda_{eff}, S = 0\) to
|
|
solve this problem:
|
|
|
|
\[SUR = 26.06 [dpm-sec] \frac{\dot \rho + \lambda_{eff} \rho}{\beta - \rho}\]
|
|
|
|
To get from \(10^{-6}\%\) to \(10^{1}\%\) power in 50 minutes, we can find that:
|
|
|
|
\[SUR = \frac{1-(-6)}{50} \frac{\text{decades}}{\text{minutes}} = 0.14
|
|
\text{DPM}\]
|
|
|
|
We then plug in our values (assume \(\dot \rho = 0\) with a step change):
|
|
|
|
\[0.14 = 26.06 [dpm-sec] \frac{0 + 0.1 \rho}{\beta - \rho}\]
|
|
\[0.14 \beta - 0.14 \rho= 2.606 \rho\]
|
|
|
|
\[\boxed{\rho = 0.0509\beta}\]
|
|
|
|
Thus the correct answer is C.
|