M Class_Work/nuce2101/final/latex/main.aux M Class_Work/nuce2101/final/latex/main.fdb_latexmk M Class_Work/nuce2101/final/latex/main.fls M Class_Work/nuce2101/final/latex/main.log M Class_Work/nuce2101/final/latex/main.pdf M Class_Work/nuce2101/final/latex/main.synctex.gz M Class_Work/nuce2101/final/latex/problem1.tex M Class_Work/nuce2101/final/latex/problem2.tex
43 lines
1.2 KiB
TeX
43 lines
1.2 KiB
TeX
\section*{Problem 3}
|
|
\subsection*{Part A}
|
|
|
|
The moderator temperature coefficient must be controlling power. With all other
|
|
factors constant, the moderator temperature coefficient is the only thing adding
|
|
negative reactivity to the system.
|
|
|
|
\subsection*{Part B}
|
|
|
|
\[\rho_{net} = \frac{\partial \rho_{net}}{\partial T}dT
|
|
+ \frac{\partial \rho_{net}}{\partial H} dH
|
|
+ \frac{\partial \rho_{net}}{\partial Poison} dPoison
|
|
+ \frac{\partial \rho_{net}}{\partial Power} dPower
|
|
\]
|
|
|
|
But with ingoring fuel temperature feedback and no boron effects,
|
|
|
|
\[\rho_{net} = -10 [\frac{\text{pcm}}{^\circ F}]dT
|
|
+ \frac{\partial \rho_{net}}{\partial H} dH
|
|
\]
|
|
|
|
|
|
Given that there is no poison or fuel temperature feedback, and steam demand
|
|
does not change, reactor power will stay the same after the control rod drops
|
|
into the core. Only moderator temperature can change reactivity in this problem.
|
|
|
|
\subsection*{Part C}
|
|
|
|
\[0 = -10 [\frac{\text{pcm}}{^\circ F}]dT
|
|
- 100[pcm]
|
|
\]
|
|
|
|
\[dT = \frac{100[pcm]}{-10[\frac{\text{pcm}}{^\circ F}]}\]
|
|
|
|
\[dT = -10^\circ F\]
|
|
\[\boxed{T_{final} = 577^\circ F}\]
|
|
|
|
\subsection*{Part D}
|
|
|
|
Power will remain the same, and therefore steam pressure should remain the same
|
|
as well.
|
|
|