Dane Sabo 912eaf8208 Auto sync: 2025-12-08 13:15:47 (11 files changed)
M  Class_Work/nuce2101/final/latex/main.aux

M  Class_Work/nuce2101/final/latex/main.fdb_latexmk

M  Class_Work/nuce2101/final/latex/main.fls

M  Class_Work/nuce2101/final/latex/main.log

M  Class_Work/nuce2101/final/latex/main.pdf

M  Class_Work/nuce2101/final/latex/main.synctex.gz

M  Class_Work/nuce2101/final/latex/problem1.tex

M  Class_Work/nuce2101/final/latex/problem2.tex
2025-12-08 13:15:47 -05:00

21 lines
607 B
TeX

\section*{Problem 2}
We can use the startup rate equation assuming \(\dot \lambda_{eff}, S = 0\) to
solve this problem:
\[SUR = 26.06 [dpm-sec] \frac{\dot \rho + \lambda_{eff} \rho}{\beta - \rho}\]
To get from \(10^{-6}\%\) to \(10^{1}\%\) power in 50 minutes, we can find that:
\[SUR = \frac{1-(-6)}{50} \frac{\text{decades}}{\text{minutes}} = 0.14
\text{DPM}\]
We then plug in our values (assume \(\dot \rho = 0\) with a step change):
\[0.14 = 26.06 [dpm-sec] \frac{0 + 0.1 \rho}{\beta - \rho}\]
\[0.14 \beta - 0.14 \rho= 2.606 \rho\]
\[\boxed{\rho = 0.0509\beta}\]
Thus the correct answer is C.