47 lines
5.7 KiB
Plaintext

{
"nodes":[
{"id":"5e184d3db8adc84a","type":"text","text":"NEWER","x":-1000,"y":-585,"width":250,"height":60},
{"id":"b86989bf5f8642f0","type":"text","text":"2025","x":-1000,"y":-450,"width":250,"height":60},
{"id":"17ab7dbc641481be","type":"text","text":"2021","x":-1000,"y":180,"width":250,"height":60},
{"id":"053be4b4e5459efa","type":"text","text":"2023","x":-1000,"y":-160,"width":250,"height":60},
{"id":"ce4a2c0bf9224f9d","type":"text","text":"2019","x":-1000,"y":500,"width":250,"height":60},
{"id":"684196d797ac66e3","type":"file","file":"Zettelkasten/Literature Notes/Enhancing Cyber-Physical System Dependability via Synthesis - Challenges and Future Directions.md","x":-720,"y":-420,"width":480,"height":400,"color":"3"},
{"id":"35eebdf6214c8c88","type":"text","text":"# Machine Learning","x":-1855,"y":100,"width":440,"height":80},
{"id":"f9208a6e4a7ef241","type":"text","text":"## Linear Temporal Logic","x":-1415,"y":-257,"width":346,"height":74},
{"id":"bcc9c2b5dc701338","type":"text","text":"# Formal Methods","x":-1885,"y":-420,"width":440,"height":80},
{"id":"cdbcb13db184af6e","type":"text","text":"## Neural Networks","x":-1367,"y":360,"width":250,"height":100},
{"id":"6d8080147062d756","type":"text","text":"# Control Systems","x":-1885,"y":500,"width":440,"height":85},
{"id":"a48f191e45326c85","type":"text","text":"3rd Pass","x":-1305,"y":-615,"width":140,"height":60,"color":"#247402"},
{"id":"b888908bc3509237","type":"text","text":"Not Read","x":-1808,"y":-615,"width":150,"height":60,"color":"1"},
{"id":"42d4be73c13f91cb","type":"text","text":"1st Pass","x":-1635,"y":-615,"width":140,"height":60,"color":"3"},
{"id":"a2800119b02cdda0","type":"text","text":"2nd Pass","x":-1467,"y":-615,"width":145,"height":60,"color":"4"},
{"id":"1c13a0968706a8b0","type":"text","text":"Brilliant / Important","x":-1808,"y":-695,"width":243,"height":60,"color":"5"},
{"id":"53a95b3f2101d32c","type":"file","file":"Zettelkasten/Literature Notes/The Past, Present and Future of Cyber-Physical Systems - A Focus on Models.md","x":-720,"y":1260,"width":480,"height":300,"color":"3"},
{"id":"ac067a0584359781","type":"text","text":"## Cyber-Physical Systems","x":-1515,"y":670,"width":297,"height":80},
{"id":"bbe4a58a5af748eb","type":"text","text":"OLDER","x":-1000,"y":1600,"width":250,"height":60},
{"id":"b081d5b64b515d56","type":"text","text":"2017","x":-1000,"y":890,"width":250,"height":60},
{"id":"2e49adbdc97ce1c2","type":"text","text":"2015","x":-1000,"y":1260,"width":250,"height":60},
{"id":"6b62b3a19b06fc0a","type":"file","file":"Zettelkasten/Literature Notes/A Review of Formal Methods applied to Machine Learning.md","x":-200,"y":240,"width":520,"height":370,"color":"3"},
{"id":"bac68ab8fa2c1c9b","type":"file","file":"Zettelkasten/Literature Notes/Formal verification of neural network controlled autonomous systems.md","x":-720,"y":530,"width":485,"height":360,"color":"3"},
{"id":"7ad1df279923e7f4","type":"file","file":"Zettelkasten/Literature Notes/A systematic classification of neural-network-based control.md","x":-720,"y":1660,"width":480,"height":400,"color":"1"},
{"id":"b16d77e25162b164","type":"file","file":"Zettelkasten/Literature Notes/Nonlinear Identification and Control.md","x":-200,"y":1660,"width":400,"height":400,"color":"1"},
{"id":"dae189dd0beeb46d","type":"file","file":"Zettelkasten/Literature Notes/Neural network-based flight control systems - Present and future.md","x":-720,"y":100,"width":480,"height":360,"color":"1"},
{"id":"8af915dccc8e1757","type":"file","file":"Zettelkasten/Literature Notes/Differential neural networks for robust nonlinear control - identification, state estimation and trajectory tracking.md","x":240,"y":1660,"width":400,"height":400,"color":"1"},
{"id":"034773fb85df43e9","type":"file","file":"Zettelkasten/Literature Notes/Safe Reinforcement Learning via Shielding under Partial Observability.md","x":-200,"y":-183,"width":520,"height":363,"color":"1"},
{"id":"1b0680305c662125","type":"file","file":"Zettelkasten/Literature Notes/Safe Reinforcement Learning via Shielding.md","x":-200,"y":670,"width":520,"height":330,"color":"3"},
{"id":"0655d596e2c1bd88","type":"file","file":"Zettelkasten/Literature Notes/Reluplex - An Efficient SMT Solver for Verifying Deep Neural Networks.md","x":-1242,"y":100,"width":400,"height":400,"color":"3"}
],
"edges":[
{"id":"766a32fa431c6398","fromNode":"bcc9c2b5dc701338","fromSide":"bottom","toNode":"bac68ab8fa2c1c9b","toSide":"top","color":"2"},
{"id":"25f8b04d82996c32","fromNode":"bbe4a58a5af748eb","fromSide":"top","toNode":"5e184d3db8adc84a","toSide":"bottom"},
{"id":"66ff531cf74ca736","fromNode":"bcc9c2b5dc701338","fromSide":"bottom","toNode":"f9208a6e4a7ef241","toSide":"left","color":"2"},
{"id":"d0e7818c33f3f1e4","fromNode":"f9208a6e4a7ef241","fromSide":"right","toNode":"684196d797ac66e3","toSide":"left","color":"2"},
{"id":"d3fc8e41f74c6be2","fromNode":"bcc9c2b5dc701338","fromSide":"bottom","toNode":"6b62b3a19b06fc0a","toSide":"left","color":"2"},
{"id":"989962cf09e6c69a","fromNode":"35eebdf6214c8c88","fromSide":"bottom","toNode":"6b62b3a19b06fc0a","toSide":"left","color":"1"},
{"id":"0bf0b6a89dc178f1","fromNode":"35eebdf6214c8c88","fromSide":"bottom","toNode":"cdbcb13db184af6e","toSide":"left","color":"1"},
{"id":"6fcecc3bb05f31d4","fromNode":"cdbcb13db184af6e","fromSide":"right","toNode":"bac68ab8fa2c1c9b","toSide":"top","color":"1"},
{"id":"bc21fb713db9811b","fromNode":"6d8080147062d756","fromSide":"bottom","toNode":"ac067a0584359781","toSide":"left","color":"5"},
{"id":"4c935f8e58244ecc","fromNode":"ac067a0584359781","fromSide":"right","toNode":"53a95b3f2101d32c","toSide":"top","color":"5"},
{"id":"436873e6397fad07","fromNode":"ac067a0584359781","fromSide":"right","toNode":"bac68ab8fa2c1c9b","toSide":"left","color":"5"}
]
}