Preamble

Dane Sabo

Dane.Sabo@pitt.edu

September 3rd, 2024

Instructions

Complete the problems below being sure to show your work. If you need to lookup nuclear data from an external source please reference the source in your solutions.

Problems

1. How many neutrons and protons are there in the nuclei of the following atoms:

Atom	Protons	Neutrons
$^7{ m Li}$	3	4
$^{24}{ m Mg}$	12	12
$^{135}\mathrm{Xe}$	54	81
$^{209}\mathrm{Bi}$	83	126
$^{222}\mathrm{Rn}$	86	136

2. The atomic weight of $^{59}\mathrm{Co}$ is 58.93319. How many times heavier is $^{12}\mathrm{C}$?

$$\frac{^{59}\text{Co}}{^{12}\text{C}} = \frac{58.93319}{12.00000} = 4.91110 \text{ times larger}$$

3. How many atoms are there in 10g of
$$^{12}C$$
?
$$10g \times \tfrac{1 \text{ mol}^{\ 12}C}{12g} \times \tfrac{0.6022045 \times 10^{24} \text{ atoms}}{1 \text{ mol}^{\ 12}C} = 5.0184 \times 10^{23} \text{ atoms of } ^{12}C$$

4. A beaker contains 50 g of ordinary water.

a. How many moles of water are present?

$$50\mathrm{g} imesrac{1\ \mathrm{mol}\ H_2O}{18.01528\mathrm{g}}=2.77542\ \mathrm{moles}\ \mathrm{of}\ \mathrm{water}$$

b. How many hydrogen atoms?

$$2.77542 ext{ moles of water } imes rac{2 ext{mol}H}{1 ext{mol}H_2O} imes rac{0.6022045 imes 10^{24} ext{ atoms}}{1 ext{ mol }H} = 3.34274 imes 10^{24} ext{ H atoms}$$

c. How many deuterium atoms?

$$3.34274 imes10^{24}~\mathrm{H~atoms} imesrac{0.0156^2H}{1H}=5.21468 imes10^{22}~\mathrm{deuterium~atoms}$$

5. Find the mass of an atom of $^{235}\mathrm{U}$

a. in amu;

235.043928 amu

b. in grams.

$$1~{\rm atom}~^{235}U \times \tfrac{1~{\rm mol}~^{235}U}{0.6022045 \times 10^{24}~{\rm atoms}} \times \tfrac{235.043928~{\rm g}}{1~{\rm mol}~^{235}U} = 3.90306 \times 10^{-20}~{\rm g}$$

6. The complete combustion of 1 kg of bituminous coal releases about $3\times 10^7 {\rm J}$ in heat energy. The conversion of 1 g of mass into energy is equivalent to the burning of how much coal?

The speed of light is 299,792,458 m/s.

$$E = mc^2$$

$$E = 0.001 \text{ kg} (299792458 \text{ m/s})^2$$

$$E = 8.98755 \times 10^{13} \,\mathrm{J}$$

$$\left(8.98755 \times 10^{13} \ \mathrm{J} \ \right) imes rac{1 \ \mathrm{kg}}{3 imes 10^7 \ \mathrm{J}} = 2995850 \ \mathrm{kg} \ \mathrm{of} \ \mathrm{coal}$$

7. Tritium (3 H) decays by negative beta decay with a half-life of 12.26 years. The atomic weight of 3 H is 3.016.

a. To what nucleus does ³H decay?

Helium-3

b. What is the mass in grams of 1 mCi of tritium?

First, we need to find the decay constant of tritium:

$$\lambda = rac{0.693 \; ext{decay}}{12.26 \; ext{years}} = 1.79241 imes 10^{-9} rac{ ext{decay}}{ ext{s}}$$

And we also know that one millicurie is:

$$1~mCi = 3.7 \times 10^{10} \tfrac{decay}{s}$$

Therefore we find multiple of the decay constant we need:

$$ext{Ratio} = rac{1 ext{ mCi}}{\lambda} = rac{3.7 imes 10^{10} rac{ ext{decay}}{ ext{s}}}{1.79241 imes 10^{-9} rac{ ext{decay}}{ ext{s}}} = 2.06426 imes 10^{19}$$

Then we know we need this many atoms to decay (on average) at the mean activity. We now can convert to grams:

$$\left(2.06426 imes 10^{19}
ight) imes rac{1 ext{ mol }^3 H}{0.6022045 imes 10^{24} ext{atoms}} imes rac{3.01605 ext{ g}}{1 ext{ mol }^3 H} = 1.03385 imes 10^{-4} ext{ g}$$

8. Approximately what mass of $^{90}\mathrm{Sr}$ (T-1/2 = 28.8 years) has the same activity as 1g of $^{60}\mathrm{Co}$ (T-1/2 = 5.26 years)?

First let's find the number of cobalt atoms:

$$1 ext{g} imes rac{1 ext{ mol}^{60} ext{Co}}{59.934 ext{ g}} = 1.66850 imes 10^{-2} ext{ mol}^{60} ext{Co}$$

Now we can find how much more strontium we need:

$$\frac{28.8 \text{ years}}{5.26 \text{ years}} = 5.47528$$

Finally we multiply this number by the moles of cobalt, and convert back to mass for strontium-90:

$$\left(1.66850 imes 10^{-2} \ ext{mol}^{\ 60} ext{Co}
ight) imes rac{5.47528 \ ext{mol}^{\ 90} ext{Sr}}{1 \ ext{mol}^{\ 60} ext{Co}} rac{89.90773 \ ext{g}}{1 \ ext{mol}^{\ 90} ext{Sr}} = 82.13525 \ ext{g}^{\ 90} ext{Sr}$$

9. Using the chart of the nuclides, complete the following reactions. If a daughter nucleus is radioactive, indicate the complete decay chain:

$$^{18}{\rm N} \rightarrow ^{18}{\rm O}$$

$$^{83}{\rm Y} \rightarrow ^{83}{\rm Sr} \rightarrow ^{83}{\rm Rb} \rightarrow ^{82}{\rm Kr}$$

$$^{219}{\rm Rn} \rightarrow ^{215}{\rm Po} \rightarrow ^{211}{\rm Pb} \rightarrow ^{211}{\rm Bi} \rightarrow ^{207}{\rm Ti} \rightarrow ^{207}{\rm Pb} \rightarrow ^{203}{\rm Hg} \rightarrow ^{203}{\rm Tl}$$