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Relevant Reading Assignments

e Sections 6.5 to 6.8 of “Introduction to Nuclear
Engineering” by Lamarsh and Baratta, 3™
Edition.

e Chapter 3 of “Nuclear Reactor Analysis” by
Duderstadt and Hamilton

e Page 100-120 of “Nuclear Engineering: Theory
and Technology of Commercial Nuclear Power”
by Knief, 2" Edition.
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Relevant Reading Assignments

e “Secrecy, simultaneous discovery, and the
theory of nuclear reactors” by Spencer
Weart. American Journal of Physics, Vol.
45(11). November 1977
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Learning Objectives

e Describe the identifying characteristics of a nuclear reactor
e Differentiate among critical, supercritical, and subcritical conditions in a reactor
e Identify the terms in the four and six factor formulas

e Explain the principle of neutron moderation by light nuclei and the importance to thermal
reactors

e Understand the impact of heterogeneity on neutron balance
e Describe PWR and BWR fuel assemblies and some of the differences between them
o Differentiate between the infinite (k..) and effective (keff or k) multiplication factors

e Explain how the terms in the four and six factor formulas may be adjusted to control criticality
in reactor and processing settings
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Classifying Reactors

J By type of reaction J By generation (I-1V)

—  Fusion o By use

—  Fission (fast neutrons, thermal neutrons) Electricity (nuclear power plant)

e By moderator material (thermal reactors only) ~  Propulsion {marine propulsion)

—  Graphite —  Heat (desalination, domestic/industrial heating,
hydrogen production)

—  Water (heavy and light)
—  Transmutation (breeding fuel, isotope production,

—  Light elements (Be, Li) weapons-grade material production)

o By coolant —  Research (training, materials testing)
—  Water (PWR, Heavy Water PWR, BWR, Pool)
—  Liquid metal

—  Gascooled

- Molten salt
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Reactor Properties

e Many types of reactors exist but they all share some important
requirements

— Nuclear fuel (fissile + fissionable)
— Reactivity control mechanisms
— Cooling capability

e Heat created through fission
— Kinetic energy of fission products
— Absorption of fission photons

— Decay heat (radioactive decay)
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Nuclear Power Plants
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Neutron Economy

e Nuclear reactor core design focuses on the neutron economy
within a reactor during its operating lifetime

e A successful reactor design must

— Produce enough excess neutrons to keep the chain reaction going

— Limit the number of excess neutrons so that the reaction does not
become uncontrolled

— Consider thermal and material limits as well!

e Nuclear designers balance neutron sources (fuel) with neutron
absorbers and leakage, the rate at which neutrons escape from
the core.
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Neutron Life-Cycle

e Birth: Neutrons are born during fission events

e Lifetime: The lifetime of the neutron is the time between its birth and death.
During this time the neutron potentially undergoes many scattering reactions
off of host nuclei in the system

e Death: Neutron death occurs when the neutron leaks from the system or is
absorbed by a host nuclei (potential triggering a fission reaction).
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Life-Cycle Definition of k

e Accumulation boiled down to single number by defining
multiplication factor, k

~ Number of neutrons in one generation
Number of neutrons in preceding generation

e Measures how many (average) neutrons are produced by each
neutron born

e Characterizes the chain-reaction

— Each neutron born must itself create at least 1 more neutron
before being absorbed/leaking to sustain reaction

11
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Criticality

e (ritical: Reactor is static. The number of neutrons from
generation to generation does not change

e Subcritical: Number of neutrons from generation to generation
decreases, the reaction eventually dies out

e Supercritical: Number of neutrons from generation to generation
increases without bound

k<1 subcritical

k=1 critical

k>1 supercritical

12
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Determining k

e Finding k is crucial in reactor design

e Today the determination of k is done using
mathematical theories and computer hardware not
available to the first reactor designers

e Original theories primarily based on physical
intuition and written in terms of experimentally
measurable quantities

e These theories distinguish between infinite (easier to
quantify) and finite systems (practical)

13
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Nuclear Reactions

FISSION
"9“"°"l Production = Fission Rate (Z;®)
© X Neutrons produced
Nucleus Nucleus

per fission (v)

Destruction Rate = Absorption Rate (£,®)
Netiros A e on

CAPTURE FISSION

Neutron

Neutron Neutron 14
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Infinite System

e Neutron Balance

— Production Rate <> Absorption Rate
DIN ) 2,0

— (Infinite) Multiplication Factor

_ Production Rate v,

K = —
“ Absorption Rate X

a

— Simplified model using one energy group

— Everything has been effectively energy averaged

15
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Neutron Scattering
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Neutron Moderator Materials

Neutron Moderation Properties of Selected Atoms and Molecules
Moderator Target  Atomic Mass (A) Scattering Ratio (a) (1- ) Collisions to Thermal'
H 1 0.000 1.000 18
H20 20
D 2 0.111 0.889 25
D20 35
Be 9 0.640 0.360 86
C 12 0.716 0.284 114
0] 16 0.779 0.221 150
Na 23 0.840 0.160 218
U 238 0.983 0.017 2148
+Average number of collisions to moderate a fast (1 MeV) neutron to a thermal equilibrium energy of 0.025 eV.

e Low Z atoms are more effective moderators than high Z atoms

e Most modern reactors use H, D, or C as moderators

18
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Infinite Systems

e Consider the life cycle of a single fission neutron, and the different
paths it can take:

e Born at high energy (fast > 1MeV)

— Some fast neutrons are absorbed and cause fission

e |nteracts with moderator to slow down

— Some are absorbed by moderator

e Once the neutron reaches thermal energy it is absorbed

— Only some of the thermal neutrons are absorbed in the fuel.

— Only some of the thermal neutrons absorbed in the fuel cause fission
events

19
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Infinite Systems

e Four-Factor Formula for k-infinity

k,=¢ep nf

(sz )total
(sz )th

p = Resonance Escape Probability =

& = Fast Fission Factor =

(za)total
fuel
f =Thermal Utilization Factor = (za)“‘
(za)th
n ="Eta"= Reproduction Factor = (VEffu“e]
(za)th
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Infinite Systems

e Four-Factor Formula . (VZ )
koo = ¢ p n f (za)total

.. >,
& = Fast Fission Factor :%
f Jth

p = Resonance Escape Probability = %
a /total

f = Thermal Utilization Factor =—24 >77 f (sz)th
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Moderator-to-Fuel Ratio Effect on k_
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Four-Factor Formula

|(l

e Fuel “Lumping” / Lattice Arrangement

— Increase Fast Fission Factor e

— Increase Resonance Escape Probability p

— Decrease Thermal Utilization f

— Pin Diameter and Spacing to optimize p X f

e Similar to previous koo vs. M-to-F curve

— Example: LWR-like lattice

25
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Finite System

e Neutron Balance

Production <> Absorption + Leakage

\PIPL ORI () + Leakage
K =k = Production

Absorption + Leakage

Note: k, >k (To accommodate leakage)

27
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Six Factor Formula

e Six-Factor Formula
keff = koo P fnl P tnl

keff= ep anfnl Ptnl
P, = Fast Non-Leakage Probability

P, ; = Thermal Non-Leakage Probability

ker=epnfPy

P, = Total Non-Leakage Probability

28
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Few Neutrons Leak from More Neutrons Leak
\Volume as Sphere from Volume as Slab

| eakage depends on shape & size (surface-to-volume ratio)

29
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Criticality Control
10}
e No reactor can be constantly
critical
* Fuel depletion
10"}
— Fission removes a fuel atom and 3
creates two new atoms o
— Transient fission product poisons é
£ 0_2
¢ Xenon and Samarium 0% I
— Fission product poison build up _ i
e 83Kr, 95Mo, 143Nd, 147Pm / \
- [.’l - Eission :ff U-233 by thermal neutrons t \-‘
o ! — ission - 235 by thermal neutrons ¢
g Temperature (mOderatOF i[t —— Fission OfPL:.I‘239 zy thermal neutrons | \ i
- | S it ot et et el )
denSIty) Changes “ | EEEeE Fission of F?u-239 gy fast reactor neutrons} =10 \‘ |
| i)
\
10 . L

70 80 30 100 110 120 130 140 3‘5’30 160
Mass number A.



\ T T - . ~ T Stephen R. Tritch
University of l,)lttsl)urgh :

Nuclear Engineering Program

Creating Neutron Balance

e States of criticality

keff = 1 Critical
keff > 1 Supercritical
keff < 1 Subcritical

e |n order to keep an operating nuclear reactor critical we will
need to “adjust” terms in the neutron balance

e Neutron balance controls

— Production
— Absorption

— Leakage

34
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Creating Neutron Balance

e Let us consider how we could adjust these parameters to achieve a target keff
for two different applications

e Nuclear Power Plant
— Target keff:

o keff =1 for steady-state operation

o keff > 1 for start-up, keff < 1 for shutdown

e Nuclear Fuel Processing Facility
— Target keff:

e keff <1 under all possible conditions (including accidents)

35
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Beyond 4 & 6 Factor Formulas

e In alarge reactor, different parts of the core may be behaving very differently

— Outer regions of the core will have a large amount of neutrons escaping from the core,
and will be losing a large fraction of neutrons than are born within the region.

— Neutrons produced in inner regions of the core have little chance of escaping the core.

These inner regions will effectively produce more neutrons than are needed locally for
fission.

e Forthe reactor as a whole to be critical, these local regions must balance each
other out.

— Different concentrations of neutron densities and reaction rates throughout the core.

— Neutrons “flow” from the center of the core towards the edge.

36
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Neutron Density

e During steady-state operations there is a natural spatial distribution of
neutrons throughout the core.

e This natural distribution depends on the shape of the reactor and the
locations of fissile fuel and neutron poisons in the core

— Peaked in center
— Low near edge of core

— Low density near neutron poisons

e |n addition to the gross shape of the neutron density, there are local
variations that can have a significant effect on the behavior of the core

— Localized peaking is usually limiting condition in core

37
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Radial Neutron Density
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Example of
Energy Dependence
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