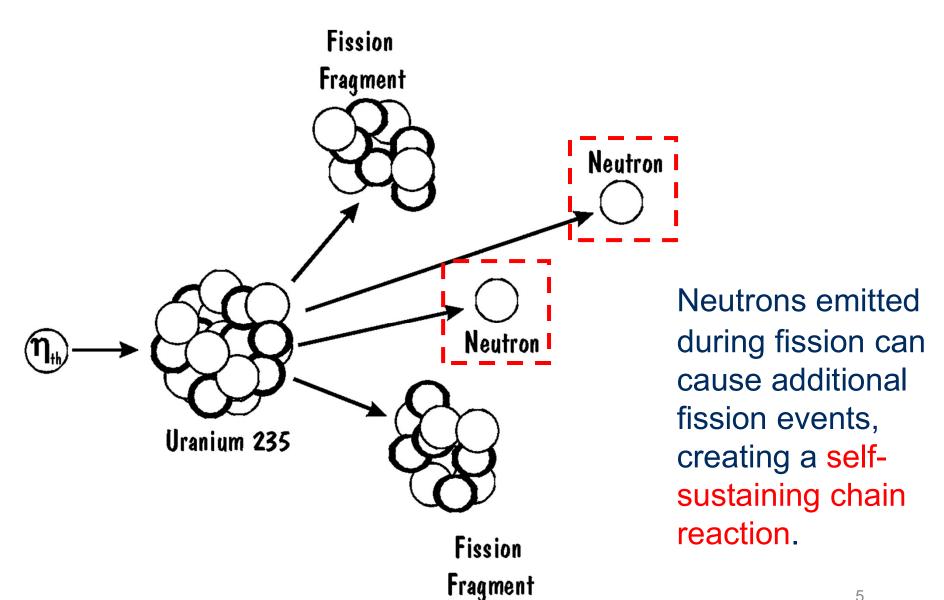


Relevant Reading Assignments

- Chapter 2/3 of "Introduction to Nuclear Engineering," Lamarsh and Baratta, 3rd edition, Prentice-Hall (2001)
- Chapter 2 of "Nuclear Engineering: Theory and Technology of Commercial Nuclear Power," Knief, 2nd edition, American Nuclear Society (1992, reprint by ANS 2008)
- Chapter 2 of "Nuclear Reactor Analysis," Duderstadt and Hamilton, Van Nostrand (1976)
- Module 1 of DOE Fundamentals Handbook, "Nuclear Physics and Reactor Theory," U.S.DOE (1993)Available at:

https://www.standards.doe.gov/standards-documents/1000/1019-bhdbk-1993-v1

 Not required but useful and clear is the discussion of nuclear masses and binding energies at the beginning of Chapter 7 of "Concepts of Nuclear Physics" by Bernard L. Cohen, McGraw-Hill, 1971, available in most scientific libraries.



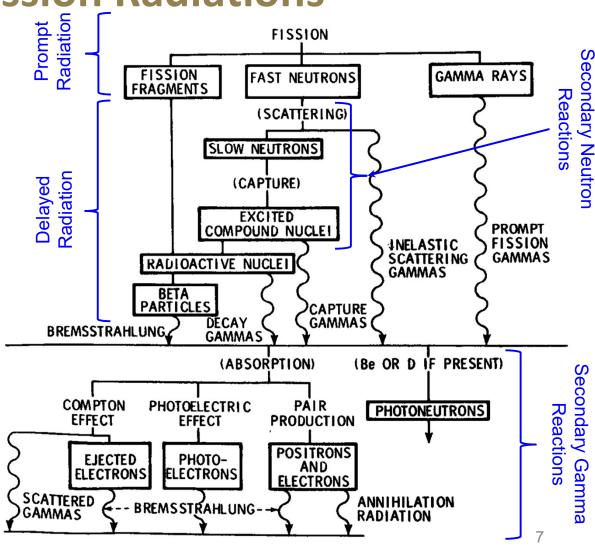
Learning Objectives

- Define fissile, fissionable, and fertile. Identify the major nuclides in each of these three categories.
- Describe the distribution of energy among the product particles and radiations associated with fission. Explain the basis for decay heat.
- Describe the energy distribution of fission neutrons.

Nuclear Fission

- Of all the nuclear reactions we have considered, fission is the most interesting
 - Occurs only in the heaviest, least stable nuclei
 - Can occur either as a natural decay mode (spontaneous fission), or due to a nuclear interaction by another particle (a neutron)
- Only the Actinides (Z ≥ 89) are large enough to allow fission
 - Only Uranium is naturally occurring (note that ²³²Th is naturally occurring, but must first absorb a neutron to produce ²³³U, which is fissile)
 - Only 2 total naturally occurring isotopes ²³⁵U and ²³⁸U
 - Other isotopes can be artificially produced by neutron bombardment
- Two reasons that fission is so important (and valuable)
 - Large energy release per fission (200 MeV / fission)
 - Possibility of controllable self-sustaining chain reaction.

Sensible Energy Released During Fission


	$\underline{\text{MeV}}$	<u>%</u>
Fission Fragments (Kinetic Energy)	168	84.0
Neutrons (Kinetic Energy)	5	2.5
Prompt Gamma Rays	7	3.5
Delayed Radiations		
Beta Particles* (Kinetic Energy)	8	4.0
Gamma Rays	7	3.5
Radiative Capture Gammas	5	-2.5
TOTAL	200	100

*Neutrinos account for another 12 MeV that cannot be detected

Fissioning one uranium atom provides <u>nearly 100,000,000 times</u> as much energy as combusting one carbon atom.

Secondary Fission Radiations

- Fission reactions are extremely disruptive, producing:
- Prompt Radiation
 - Fission products
 - Free Neutrons
 - Prompt gammas
- Delayed Radiation
 - Decay of unstable fission products
 - Reactions caused by free neutrons
 - Secondary reactions

Reproduced from Knief, 1992, Nuclear Engineering

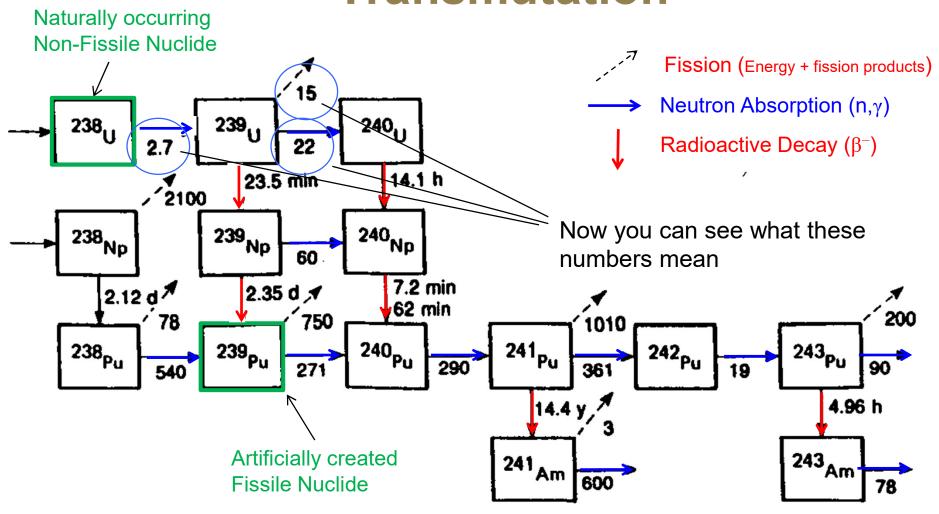
- Radiation sources from nuclear power plants consist of
- a) Fission fragments, prompt neutrons, and gamma radiation emitted at the time of fission
- b) Gamma radiation emitted as a result of (n, γ) reactions
- c) Delayed radiation from activation and transmutation products
- d) All of the above

- Q. Radiation sources from nuclear power plants consist of
- a) Fission fragments, prompt neutrons, and gamma radiation emitted at the time of fission
- b) Gamma radiation emitted as a result of (n, y) reactions
- c) Delayed radiation from activation and transmutation products
- d) All of the above

Define fissile, fissionable, and fertile. Identify the major nuclides in each of these three categories

Nuclear Fission

- Nuclides in the Actinide period are classified by their potential to undergo fission events when their nucleus is struck by a neutron
- A nuclide is said to be Fissionable if neutron-induced fission is possible in the nuclide.
 - All nuclides with atomic number 7 > 89 are fissionable.
- Fissionable nuclides are further classified as
 - Fissile, if fission can be caused by neutrons with any amount of kinetic energy (Typically even-odd, odd-even, or odd-odd)
 - Non-Fissile, if fission is a threshold reaction that can only be caused by high energy neutrons with a certain amount of kinetic energy (Typically even-even nuclides)



Nuclear Fission

- Fissile nuclides are most effective in a nuclear chain reaction because any neutron can cause an additional fission.
- Non-Fissile nuclides can only fission during reactions with highenergy neutrons.
 - Reactions involving low-energy neutrons typically involve the neutron being absorbed in an (n,y) event.
 - However, this neutron absorption changes the number of nucleons in the nucleus, making the atom less stable.
 - In some cases, the neutron absorption can change a non-fissile nuclide into a fissile nuclide through transmutation. The original nuclide is then said to be fertile.

Transmutation

Fertile Conversion / Breeding

$$^{238}U + ^{1}_{0}n \longrightarrow ^{239}U + ^{0}_{0}\gamma$$

$$\beta^{-} \downarrow 24 \text{ m}$$

$$^{239}Np$$

$$\beta^{-} \downarrow 2.4 \text{ d}$$

$$^{239}Np$$

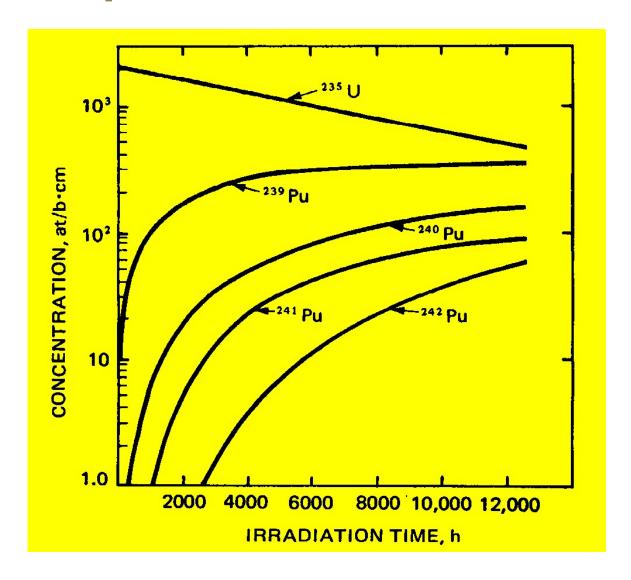
$$\begin{array}{ccc}
^{232}Th + {}^{1}_{0}n \longrightarrow & {}^{233}Th + {}^{0}_{0}\gamma \\
\beta^{-} & \downarrow & 22 \text{ m} \\
& & {}^{233}Pa \\
\beta^{-} & \downarrow & 27 \text{ d}
\end{array}$$

$$^{240}_{94}Pu + ^{1}_{0}n \rightarrow ^{241}_{94}Pu + ^{0}_{0}\gamma$$

Actinide Transmutation

- Non-Fissile nuclides that can be converted to fissile nuclides by a neutron absorption reaction are referred to as fertile nuclides.
 - ²³²Th and ²³⁸U are the most common examples of fertile nuclides
- The process of converting fertile nuclides into fissile nuclides is called conversion or breeding.

$$- ^{232}Th + n \rightarrow ^{233}U$$


$$- ^{238}U + n \rightarrow ^{239}Pu$$

Fissionable Nuclides

Major Fissionable Nuclides

Pu Buildup

• Q. Which of the following nuclides is not a fissile isotope?

- a) Pu-241
- b) Th-232
- c) U-233
- d) U-235

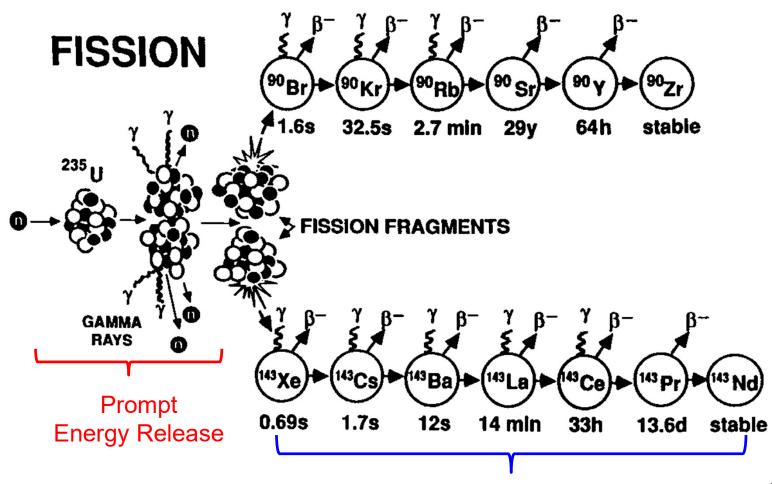
- Q. Which of the following nuclides is not a fissile isotope?
- a) Pu-241
- b) Th-232
- c) U-233
- d) U-235
 - All the odd atomic weight nuclides in this above list are fissile. So Th-232 is not a fissile isotope. It is fertile (and fissionable). Correct answer is (b)

- Q. The term "fissile" applies to nuclides that:
 - a) can be fissioned by neutrons of any energy
 - b) can be fissioned by only by neutrons of high energy
 - c) upon neutron irradiation are converted (transmuted) to nuclides which are (or will become after radioactive decay) a fissile nuclide
- Q. The term "fissionable" applies to nuclides that:
 - a) can be fissioned by neutrons of any energy
 - b) can be fissioned by only by neutrons of high energy
 - c) upon neutron irradiation are converted (transmuted) to nuclides which are (or will become after radioactive decay) a fissile nuclide
- Q. The term "fertile" applies to nuclides that:
 - a) can be fissioned by neutrons of any energy
 - b) can be fissioned by only by neutrons of high energy
 - c) upon neutron irradiation are converted (transmuted) to nuclides which are (or will become after radioactive decay) a fissile nuclide

- Q. The term "fissile" applies to nuclides that:
 - a) can be fissioned by neutrons of any energy
 - b) can be fissioned by only by neutrons of high energy
 - c) upon neutron irradiation are converted (transmuted) to nuclides which are (or will become after radioactive decay) a fissile nuclide
- Q. The term "fissionable" applies to nuclides that:
 - a) can be fissioned by neutrons of any energy
 - b) can be fissioned by only by neutrons of high energy
 - c) upon neutron irradiation are converted (transmuted) to nuclides which are (or will become after radioactive decay) a fissile nuclide
- Q. The term "fertile" applies to nuclides that:
 - a) can be fissioned by neutrons of any energy
 - b) can be fissioned by only by neutrons of high energy
 - c) upon neutron irradiation are converted (transmuted) to nuclides which are (or will become after radioactive decay) a fissile nuclide

Describe the distribution of energy among the product particles and radiations associated with fission.

Explain the basis for decay heat


Energy Released During Fission

- The energy released from fission occurs in two phases
- Prompt
 - Energy released during the fission event
 - Kinetic energy of fission fragments, free neutrons, and ejected electrons
 - · Gamma rays released during fission

Delayed

- Energy released after the fission event due to radioactive decay of fission fragments
 - Delayed gamma rays, beta particles, and neutrons
- Delayed energy may appear milliseconds to decades or longer after a fission event.

Energy Released During Fission

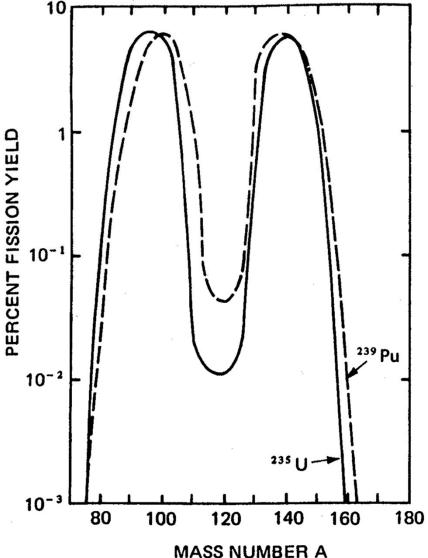
Prompt Energy Release

- Accounts for ≈90% of energy released in fission
 - Kinetic energy of fission fragments (≈ 84%)
 - Kinetic energy of free neutrons (2.5%)
 - Gamma rays emitted during fission (3.5%)
- Random number of free neutrons produced in fission
 - Between 0 and 5 neutrons produced per fission
 - Average (denoted v) between 2-3 produced per fission
- Prompt energy is divided between fission fragments and neutrons
 - Free neutrons can be produced with a wide range of initial velocities (kinetic energy).

Sensible Energy Released During Fission

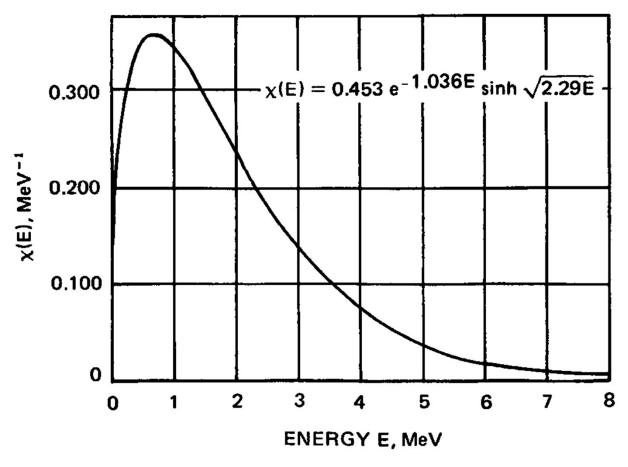
	$\overline{\mathrm{MeV}}$	<u>%</u>
Fission Fragments (Kinetic Energy)	168	84.0
Neutrons (Kinetic Energy)	5	2.5
Prompt Gamma Rays	7	3.5
Delayed Radiations		
Beta Particles* (Kinetic Energ	gy) 8	4.0
Gamma Rays	7	3.5
Radiative Capture Gammas	5	-2.5
TOTAL	200	100

7.5 % Max. Decay Heat



Delayed Energy Release

- Accounts for ≈10% of energy released in fission
 - Radioactive decay of unstable fission products (≈ 10%)
 - Energy may be released over hundreds of years as harmful gamma radiation.
 - Explains why spent nuclear fuel is difficult to handle.
- The type and amount of delayed radiation depends heavily on what daughter nuclei are produced during fission.
 - Fission splits original nucleus randomly into two pieces
 - Fission fragments are typically not the same size


Fission Fragments

- Mass distribution of fission fragments produced during fission in ²³⁵U and ²³⁹Pu.
- Original nucleus is split 66/34 into daughter nuclei.

Describe the energy distribution of fission neutrons

Neutron Energy Spectrum

Fission Neutron Energy Distribution

- Energy Range:
 - 0.1 10 MeV
- Most Probable Energy:
 - 0.7 MeV
- Average Energy
 - 2 MeV