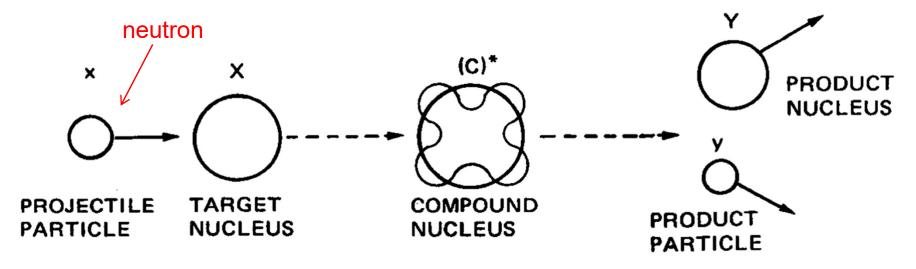


Relevant Reading Assignments

- Chapter 2/3 of "Introduction to Nuclear Engineering," Lamarsh and Baratta, 3rd edition, Prentice-Hall (2001)
- Chapter 2 of "Nuclear Engineering: Theory and Technology of Commercial Nuclear Power," Knief, 2nd edition, American Nuclear Society (1992, reprint by ANS 2008)
- Chapter 2 of "Nuclear Reactor Analysis," Duderstadt and Hamilton, Van Nostrand (1976)
- Module 1 of DOE Fundamentals Handbook, "Nuclear Physics and Reactor Theory," U.S.DOE (1993)Available at:

https://www.standards.doe.gov/standards-documents/1000/1019-bhdbk-1993-v1

 Not required but useful and clear is the discussion of nuclear masses and binding energies at the beginning of Chapter 7 of "Concepts of Nuclear Physics" by Bernard L. Cohen, McGraw-Hill, 1971, available in most scientific libraries.



Learning Objectives

 Be able to write nuclear reactions / balance equations and calculate the Q value of a given reaction

- For this class, reactions between a subatomic particle (neutron) and a nucleus are of particular interest.
- Nuclear reactions are most easily caused by neutrons
 - Except at HIGH kinetic energy, charged particles cannot reach nucleus due to electrostatic forces
- For convenience we use a shorthand notation to describe nuclear reactions
 - Like everything else in nature, nuclear reactions must obey balance equations.

Notation Examples $^{1}H+n\rightarrow^{2}H+\gamma$ $^{1}H(n,\gamma)^{2}H$ $^{1}H(n,\gamma)$

Reaction Energy Balance

For the reaction

$$A + B \rightarrow C + D$$

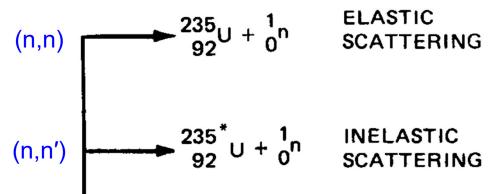
the energy balance can be written mathematically as:

$$E_A + M_A c^2 + E_B + M_B c^2 = E_C + M_C c^2 + E_D + M_D c^2$$

- E_x Sensible energy of constituent x
 - Kinetic energy for particles with mass (=M_vv²/2) --or--
 - Energy of EM radiation involved in reaction (γ rays)
- M_xc² Mass equivalent energy (called "rest energy) of constituent x
 - Zero for EM radiation (or neutrinos) involved in reaction
- This is just conservation of energy for the system before and after the reaction.

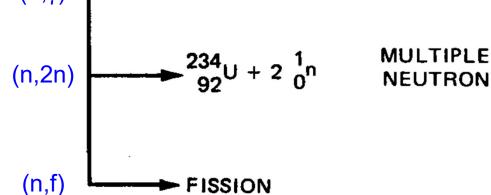
Reaction Energy Balance

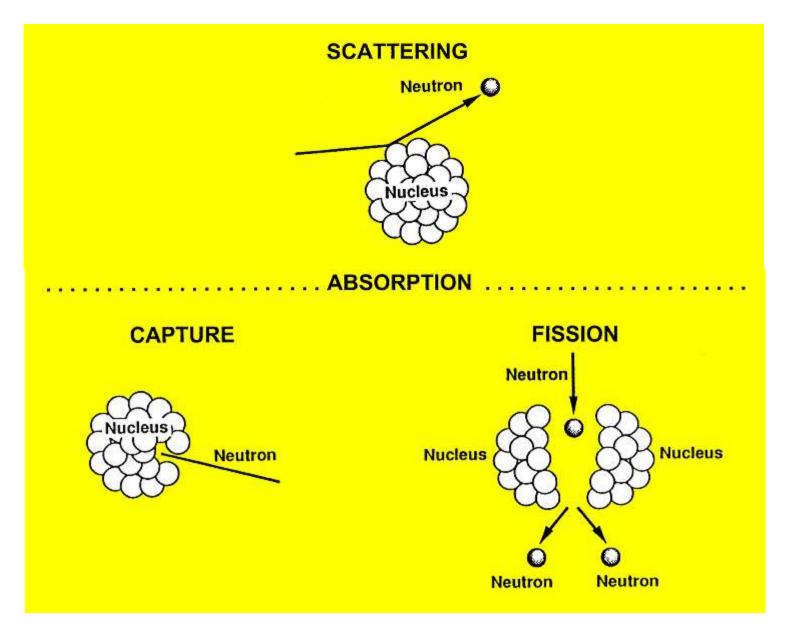
The energy balance can be rewritten to give


$$\begin{split} E_{A} + M_{A}c^{2} + E_{B} + M_{B}c^{2} &= E_{C} + M_{C}c^{2} + E_{D} + M_{D}c^{2} \\ (E_{C} + E_{D}) - (E_{A} + E_{B}) &= (M_{A} + M_{B} - M_{C} - M_{D})c^{2} \\ &\stackrel{\textit{Products}}{} &\stackrel{\textit{Reactants}}{} \end{split}$$

Sensible energy change during reaction

=Q-Value (change in binding energy)


- Q-Value Sensible energy change during reaction
 - Q > 0: Exothermic Reaction (Energy released)
 - Q < 0: Endothermic Reaction (Energy absorbed)
- Threshold Reactions
 - Some reactions require a minimum energy for reactants for a reaction to take place


An incident neutron can produce a variety of outcomes, each with its own probability of occurring.

$$\frac{235}{92}U + \frac{1}{0}n - \frac{\left(236}{92}U\right)^* - \frac{236}{(n,\gamma)} = \frac{236}{92}U + \frac{0}{0}\gamma$$
 RADIATIVE

 After formation, unstable compound nuclei may stabilize through one of several decay mechanisms.

- Neutron Induced Reactions
 - Elastic Scattering (n,n)

$$_{1}^{1}H+_{0}^{1}n \rightarrow (_{1}^{2}D)^{*} \rightarrow _{1}^{1}H+_{0}^{1}n$$

Inelastic Scattering (n,n)

$${}^{56}_{26}Fe+{}^{1}_{0}n \rightarrow ({}^{57}_{26}Fe)^* \rightarrow {}^{56^*}_{26}Fe+{}^{1}_{0}n$$

(Radiative) Capture (also called n,
\(\gamma\) reactions)

$$^{235}_{92}U + ^{1}_{0}n \rightarrow (^{236}_{92}U)^* \rightarrow ^{236}_{92}U + ^{0}_{0}\gamma$$

$$^{23}_{11}Na+^{1}_{0}n \rightarrow (^{24}_{11}Na)^* \rightarrow ^{24}_{11}Na+^{0}_{0}\gamma$$

- Neutron Induced Reactions
 - Charged Particle (n, α) (n,p) (n,d) (n,2p) . . .

$${}^{10}_{5}B + {}^{1}_{0}n \rightarrow ({}^{11}_{5}B)^* \rightarrow {}^{7}_{3}Li + {}^{4}_{2}\alpha$$

[Notation: this can also be written as ${}^{10}B(n,\alpha)$ ${}^{7}Li$]

Multiple Neutron (n,2n) (n,3n)

$$^{233}_{92}U + ^{1}_{0}n \rightarrow (^{234}_{92}U)^* \rightarrow ^{232}_{92}U + 2^{1}_{0}n$$

- Fission (n,f)

$$^{235}_{92}U + ^{1}_{0}n \rightarrow (^{236}_{92}U)^* \rightarrow F_1 + F_2 + x ^{1}_{0}n + y ^{0}_{0}\gamma$$

- Other Nuclear Reactions (Neutron as a Product)
 - Alpha (α,n) note as in previous slide, α in, n out

$${}^{9}_{4}Be + {}^{4}_{2}\alpha \rightarrow ({}^{13}_{6}C)^* \rightarrow {}^{12}_{6}C + {}^{1}_{0}n$$
 Neutron source

– Gamma (γ ,n)

$$^{2}_{1}D+^{0}_{0}\gamma \rightarrow (^{2}_{1}H)^{*} \rightarrow ^{1}_{1}H+^{1}_{0}n$$
 Neutron source

Referred to as a photoneutron reaction

(Note that there are other reactions which also produce neutrons, and there are commercial neutron sources based on them.)