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When	fission	products	build	up	in	the	core,	they	will	significantly	impact	reactor	
operation.		As	a	poison	concentration	goes	up	it	will	add	negative	reactivity.		The	
core	power	will	go	down	below	steam	demand	causing	the	system	to	cool	adding	
positive	reactivity.		The	power	will	be	restored	to	steam	demand	but	at	a	lower	
temperature.		Action	will	be	required	to	restore	temperature.		This	will	either	be	
pulling	rods	or	diluting	boron.	
	
This	document	provides	some	example	transient	calculations	for	a	large	thermal	
power	reactor.		The	data	here	is	drawn	from	information	on	the	Westinghouse	
SNUPPS	reactors	near	the	beginning	of	life	(BOL).		
	
I-135	fission	yield	 γ!	 5.7%	
Xe-135	fission	yield	 γ"#	 0.3%	
I-135	decay	constant	(6.7	hour	t1/2)	 𝜆$ 	 2.87e-05	sec-1	
Xe-135	decay	constant	(9.2	hour	t1/2)	 𝜆%& 	 2.09e-05	sec-1	
Full	Power	Burnout	Factor	𝜎'%&𝜑()*++%	 𝑅-'.	 7.34e-05	sec-1	
Power	Constant	based	on	a	Full	Power	
Equilibrium	Xe	Reactivity	of	-2900	pcm	

K	 4.56	pcm	x	sec-1	

	
With	the	following	equations	the	units	of	the	number	densities	 ,	and	 	are	
pcm’s.		The	equations	are	presented	for	review	and	for	discussion.	The	quantity,	p,		
varies	from	0	to	1	as	power	varies	from	0%	to	100%.		
	
Xenon	and	Iodine	differential	equation	
	

A = 	 )
−λ! 0
λ! −λ"# − pR/01

/	 	B = pK 2
γ!
γ"#3	

dX
dt = AX + B	 X = 	 ) N!N"#

/	

	
Equilibrium	values	are	as	follows	
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Iterate	solution	based	on	a	first	order	difference	
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An	only	slightly	more	complicated	solution		
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The	eigen	values	of	A	are	not	far	apart.		Hence	this	method	works	well	even	with	the	
first	order	difference	shown	here.		However,	a	slightly	more	complicated	approach	
with	a	split	difference	works	significantly	better.	
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The	curves	shown	in	this	document	use	the	first	method	using	the	first	order	
difference.	
	
What	follows	are	several	example	xenon	transients	to	discuss.	



	
	
This	figure	demonstrates	the	buildup	of	xenon	in	the	core	that	would	happen	
following	a	step	increase	to	100%	power.		The	final	value	in	this	case	is	2900	pcm	of	
negative	reactivity.	
	 	



	
	
This	figure	demonstrates	the	buildup	of	xenon	in	the	core	that	would	happen	
following	a	ramp	increase	to	100%	power.		The	final	value	in	this	case	is	2900	pcm	
of	negative	reactivity.	
	
	 	



	
	
This	figure	demonstrates	the	behavior	of	equilibrium	xenon	as	a	function	of	power	
level.		The	strong	rollover	in	this	curve	is	due	to	the	burnout	of	xenon.		The	
production	of	xenon	is	proportional	to	power	in	equilibrium	but	the	removal	is	also	
strongly	dependent	on	power.		
	
	 	



	
	
This	plot	demonstrates	the	makeup	of	peak	xenon	after	shutdown.		The	dashed	blue	
curve	represents	the	decay	of	the	xenon	that	was	in	the	core	at	the	time	of	the	
shutdown.		This	just	decays	with	a	9.2	hour	half-life.			The	dashed	red	line	represents	
the	contribution	to	the	xenon	from	the	iodine	that	existed	in	the	core	at	the	time	of	
shutdown.		This	curve	will	peak	at	the	same	time	independent	of	power	(11.28	
hours).	
The	magnitude	of	equilibrium	iodine	is	proportional	to	power.		The	magnitude	
equilibrium	xenon	is	less	than	a	linear	proportion	due	to	the	burn	up	of	xenon.		As	a	
result	as	power	rises,	the	sum	is	more	strongly	weighted	to	the	iodine	contribution	
moving	the	peak	to	a	later	time.		In	this	case,	full	power,	the	peak	is	at	8.3	hours.	



	
	
This	shows	the	time	to	peak	Xe	after	shutdown	from	a	steady	state	power	in	
percent.		The	time	is	in	hours.		This	is	a	plot	of	the	following	equation.	The	quantity	

		is	the	minimum	power	at	which	a	peak	will	happen.		This	quantity	is	nearly	
1.5%	for	the	sample	problem	shown	here.	
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This	is	a	sudden	shutdown	from	full	power	followed	by	a	step	back	up	to	100%	
power	at	nearly	the	time	of	the	peak	xenon.		The	notable	feature	to	this	plot	is	the	
reactivity	addition	rate	encountered	just	after	the	startup	requiring	rod	motion	or	
another	reactivity	control	mechanism.	The	burn	causes	the	xenon	reactivity	to	drop	
from	approximately	5300pcm	to	2100	pcm	in	approximately	8	hours	-	with	the	first	
hour	of	that	time	accounting	for	a	large	part	of	the	total	change.		The	reactivity	then	
recovers	to	the	full	power	equilibrium	value	of	2900	pcm.	
	 	



	

	
	
In	this	case	a	shutdown	identical	to	the	last	figure	is	used	and	a	startup	with	a	ramp	
power	increase	of	3%	per	hour	is	used.		Here	the	peak	reactivity	addition	rate	is	
significantly	less	than	the	previous	example.	
	 	



	
	
This	figure	demonstrates	an	up	power	transient	step	from	50%	to	100%	power.		
The	initial	dip	is	due	to	the	sudden	increase	in	the	burn	out	taking	place	at	the	new	
higher	power.		In	time	however	the	xenon	heads	to	its	new	equilibrium	level	for	
100%.		The	dip	turns	in	this	case	about	3.72	hours	after	the	transient.	
	
	 	



	
	
This	step	downward	transient	has	a	character	similar	to	the	xenon	following	a	
shutdown	however	it	is	less	pronounced.		This	peak	also	happens	at	about	5.49	
hours	after	the	power	transient.	 	



	

	
This	figure	is	similar	to	the	up	power	transient	shown	in	the	previous	figures.		Here	
the	power	transient	is	at	3%	per	hour	and	the	dip	is	much	less	pronounced.		The	
bottom	of	the	dip	is	shifted	well	to	the	right	due	to	the	slow	rate	of	power	increase.	
	
	
	 	



	
	
This	figure	demonstrates	a	slow	ramp	reduction	in	power	at	3%	per	hour.		There	is	
still	a	peak	in	xenon,	but	it	is	much	smaller	and	later	than	in	the	step	case.	
	
	 	



Derive the Max Peak Xenon Equation: 
	
First,	we	will	find	forms	for	the	iodine	and	xenon	concentrations	as	a	function	of	
time	and	then	we	will	use	the	differential	equation	for	xenon	to	derive	the	peak	
where	the	slope	in	the	xenon	is	zero.	
	
This	solution	could	be	easily	derived	using	integration	of	the	differential	equations.		
As	an	alternative	we	will	use	the	matrix	exponential	solution	method	for	illustration.		
	
Assume	that	the	initial	power	(p)	creates	equilibrium	xenon	and	iodine.	
At	shutdown	p	becomes	zero	and	at	the	peak	>?67
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If	p	=	0,	the	differential	equation	reduces	to:		
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The	eigen	value	diagonal	and	eigen	vector	matrixes	are:	
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We	obtain	𝑒A(		using	the	eigenvalue	diagonal	matrix	and	the	eigenvector	(modal)	
matrix	as	we	did	in	the	Fundamental	Kinetics	Ideas	handout.	
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We	know	that	the	peak	in	xenon	happens	when	D?67
D(

= 0	and	from	the	second	row	of	
A	we	see	that	this	condition	will	happen	when	[	𝜆$ , −λ"#] ∗ 𝑋	is	zero.		We	need	to	
find	the	time	when	the	following	equation	holds:	
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Now	collect	the	exponential	terms:	
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The	criteria	for	a	peak	after	shutdown	is	this	this	value	be	greater	than	zero.		This	is	
to	say	that	λ!𝑁$

23 − λ%&𝑁$
23>0.		At	the	limit	the	two	quantities	would	be	one.		This	

happens	if:		
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Using	the	equations	derived	at	the	start	of	this	paper	for	these	values	the	ratio	
becomes:	
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Solving	this	for	p	gives:	
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Constant Power Direct Solution 
	
When	the	power	is	constant	the	xenon-iodine	equations	may	be	directly	solved	as	
follows:		
	
Xenon	and	Iodine	differential	equation	
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Equilibrium	values	are	as	follows	
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Using	the	integrating	factor	𝑒4A( ,	the	differential	equation	may	be	written	as:	
	

d(𝑒4A(X)
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And	integrating	we	get:	
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And	this	becomes:	
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With	the	substitutions:	
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It	is	important	to	note	that	the	form	showing	X(t)	can	be	computed	directly	without	
resorting	to	the	much	more	complicated	for	the	components	shown	above.		This	is	a	
clear	example	of	the	benefit	of	thinking	directly	in	terms	of	matrix	arithmetic.	


