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When fission products build up in the core, they will significantly impact reactor
operation. As a poison concentration goes up it will add negative reactivity. The
core power will go down below steam demand causing the system to cool adding
positive reactivity. The power will be restored to steam demand but at a lower
temperature. Action will be required to restore temperature. This will either be
pulling rods or diluting boron.

This document provides some example transient calculations for a large thermal
power reactor. The data here is drawn from information on the Westinghouse
SNUPPS reactors near the beginning of life (BOL).

[-135 fission yield Vi 5.7%

Xe-135 fission yield Yxe 0.3%

[-135 decay constant (6.7 hour ty/2) A 2.87e-05 sec’!
Xe-135 decay constant (9.2 hour ty,2) Axe 2.09e-05 sec!
Full Power Burnout Factor g p2°% RMax | 7.34e-05 sec?
Power Constant based on a Full Power K 4.56 pcm x sec!
Equilibrium Xe Reactivity of -2900 pcm

With the following equations the units of the number densities /Vr, and Vx are
pcm’s. The equations are presented for review and for discussion. The quantity, p,
varies from 0 to 1 as power varies from 0% to 100%.

Xenon and lodine differential equation
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Iterate solution based on a first order difference
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The eigen values of A are not far apart. Hence this method works well even with the
first order difference shown here. However, a slightly more complicated approach

with a split difference works significantly better.
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The curves shown in this document use the first method using the first order

difference.

What follows are several example xenon transients to discuss.
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This figure demonstrates the buildup of xenon in the core that would happen
following a step increase to 100% power. The final value in this case is 2900 pcm of
negative reactivity.
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This figure demonstrates the buildup of xenon in the core that would happen
following a ramp increase to 100% power. The final value in this case is 2900 pcm
of negative reactivity.



Equilibrium Xenon Reactivity vs Power % Absolute Value (pcm)
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This figure demonstrates the behavior of equilibrium xenon as a function of power
level. The strong rollover in this curve is due to the burnout of xenon. The
production of xenon is proportional to power in equilibrium but the removal is also
strongly dependent on power.
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This plot demonstrates the makeup of peak xenon after shutdown. The dashed blue
curve represents the decay of the xenon that was in the core at the time of the
shutdown. This just decays with a 9.2 hour half-life. The dashed red line represents
the contribution to the xenon from the iodine that existed in the core at the time of
shutdown. This curve will peak at the same time independent of power (11.28
hours).

The magnitude of equilibrium iodine is proportional to power. The magnitude
equilibrium xenon is less than a linear proportion due to the burn up of xenon. As a
result as power rises, the sum is more strongly weighted to the iodine contribution
moving the peak to a later time. In this case, full power, the peak is at 8.3 hours.



Time to Xenon Peak vs Initial Percent Power (hours)
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This shows the time to peak Xe after shutdown from a steady state power in
percent. The time is in hours. This is a plot of the following equation. The quantity

P is the minimum power at which a peak will happen. This quantity is nearly
1.5% for the sample problem shown here.
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This is a sudden shutdown from full power followed by a step back up to 100%
power at nearly the time of the peak xenon. The notable feature to this plot is the
reactivity addition rate encountered just after the startup requiring rod motion or
another reactivity control mechanism. The burn causes the xenon reactivity to drop
from approximately 5300pcm to 2100 pcm in approximately 8 hours - with the first
hour of that time accounting for a large part of the total change. The reactivity then
recovers to the full power equilibrium value of 2900 pcm.
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In this case a shutdown identical to the last figure is used and a startup with a ramp
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power increase of 3% per hour is used. Here the peak reactivity addition rate is
significantly less than the previous example.
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This figure demonstrates an up power transient step from 50% to 100% power.
The initial dip is due to the sudden increase in the burn out taking place at the new
higher power. In time however the xenon heads to its new equilibrium level for
100%. The dip turns in this case about 3.72 hours after the transient.



Xenon Reactivity - Absolute Value (pcm)

3800 .

3600 - VAN

3400 - f

3200 - |

3000

2800 -

2600 -

2400 -

2200
0

20 30 40 50 60 70 80 90

Time (hours)

100

09 -

08 |-

Power History

05+

04 -

01+

20 30 40 50 60 70 80 90
Time (hours)

100

This step downward transient has a character similar to the xenon following a
shutdown however it is less pronounced. This peak also happens at about 5.49

hours after the power transient.
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This figure is similar to the up power transient shown in the previous figures. Here
the power transient is at 3% per hour and the dip is much less pronounced. The
bottom of the dip is shifted well to the right due to the slow rate of power increase.



3400

3200

3000

2800

2600

2400

2200
0

03

08

06

05

04

03

02

Xenon Reactivity - Absolute Value (pcm)

10 20 30 40 60 70 80 90

50
Time (hours)

Power History

100

T T T T

" . .

1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90
Time (hours)

100

This figure demonstrates a slow ramp reduction in power at 3% per hour. There is

still a peak in xenon, but it is much smaller and later than in the step case.



Derive the Max Peak Xenon Equation:

First, we will find forms for the iodine and xenon concentrations as a function of
time and then we will use the differential equation for xenon to derive the peak
where the slope in the xenon is zero.

This solution could be easily derived using integration of the differential equations.
As an alternative we will use the matrix exponential solution method for illustration.

Assume that the initial power (p) creates equilibrium xenon and iodine.

dN
At shutdown p becomes zero and at the peak Txe =0.
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If p = 0, the differential equation reduces to:

dX —A 0
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The eigen value diagonal and eigen vector matrixes are:

—A 0 A —A —A
E= [ 1 ] _ 1 Xe 0 1 0
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We obtain e4? using the eigenvalue diagonal matrix and the eigenvector (modal)
matrix as we did in the Fundamental Kinetics Ideas handout.
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We know that the peak in xenon happens when % = 0 and from the second row of

A we see that this condition will happen when [ 4;, —Ax.] * X is zero. We need to
find the time when the following equation holds:
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Now collect the exponential terms:
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The criteria for a peak after shutdown is this this value be greater than zero. This is
to say that ,;N,’? — A, N/?>0. At the limit the two quantities would be one. This
happens if:
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Using the equations derived at the start of this paper for these values the ratio
becomes:
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Solving this for p gives:
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Constant Power Direct Solution

When the power is constant the xenon-iodine equations may be directly solved as
follows:

Xenon and lodine differential equation
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Equilibrium values are as follows
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Using the integrating factor e~4¢, the differential equation may be written as:
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With the substitutions:
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[t is important to note that the form showing X(t) can be computed directly without
resorting to the much more complicated for the components shown above. This is a
clear example of the benefit of thinking directly in terms of matrix arithmetic.



