# [[ME2046_Sampled_Data_Analysis_Reading_Chapter_2pdf2254ME]] # Impulse Sampling How do we represent a sequence of numbers? Impulse sampling does it by 1. having a continuous signal 2. having an impulse train (impulses at sampling frequency) 3. multiply em together >[!info] Functionals >Laurent Schwartz (1950): >$$\int_{-\infty}^\infty \phi(x) f(x) dx = z$$ >Shift Property: >$$\int_{-\infty}^\infty \phi(t-\tau) f(t) dx = FINISH$$ >Laplace Transform **Pulse Train $\delta_t(t)$** $$\delta_T(t) = \sum_{k=-\infty}^\infty \delta(t-kT)$$ $$x^*(t) = x(t)\delta_T(t) = \sum_{k=-\infty}^\infty x(t)\delta(t-kT)$$ Where the sampled signal is $x^*$ What about in Laplace domain? $$X^*(t) = \int \left[ \sum_{k=-\infty}^\infty x(t)\delta(t-kT)\right] e^{-st} dt$$ $$X^*(t) =\sum_{k=-\infty}^\infty \left[\int x(t)\delta(t-kT) e^{-st} \right] dt$$ $$X^*(t) =\sum_{k=-\infty}^\infty \left[\int x(t)e^{-st} \delta(t-kT) \right] dt$$ Now using the shift property... $$X^*(t) =\sum_{k=-\infty}^\infty x(kT)e^{-kTs} $$ ## Some Observations If we change the variable $z = e^{Ts}$ >[!important] **The Z-Transform** > $$X^*(t) = X(z) = \sum_{k=-\infty}^\infty x(kT) z^{-k} $$ > Z transform can be viewed as short hand of the Laplace transform > > Sampling is a time varying process. If x(t) is time shifted by a small amount, the sampled signal x(kT) will be different. # Frequency Domain Interpretation $\delta_T(t)$ is periodic, so we can turn it into a Fourier series... $$\delta_T(t) = \sum_{N=-\infty}^N C_N e^{j(\frac{2\pi}{T})Nt}$$ $$C_n = \frac{1}{T}\int_{-T/2}^{T/2} \delta_T(t) e^{-j(\frac{2\pi}{T})Nt} dt$$ Apply a shift and do some stuff... $$C_n = \frac{1}{T} \int_{-T/2}^{T/2} e^{-j \frac{2\pi}{T} Nt} dt $$ $$C_n = \frac{1}{T}$$ So then... $$\delta_T(t) = \frac{1}{T} \sum_{N=-\infty}^N e^{j(\frac{2\pi}{T})Nt}$$ $$\delta_T(t) = \frac{1}{T} \sum_{N=-\infty}^N e^{j \omega_s T Nt} $$ **Insert Steps from Class to get to $X^*(Z)$** The spectrum of the sampled signal is also a periodic function of frequency with period $\omega_s$. ![[Pasted image 20250109181319.png]] A lot of times, we need to filter the high frequency stuff out, or else we'll get some issues with aliasing. **Band Limited** $|X(j\omega)|=0 \forall |\omega|>\omega_0$ # Shannon's Sampling Theorem ![[Pasted image 20250116160940.png]] ![[Pasted image 20250116161008.png]]