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1. Reactivity Effects 
 
The reactivity that appears in the kinetics equations is computed from the 
integration over the reactor volume of the weighted adjoint flux times the 
result of operating on the initial flux vector by the perturbed differential 
equation operator. The vectors here are the multigroup energy partitioned 
adjoint flux and the flux itself.  The denominator represents the net 
production of neutrons per second.  This results in a fractional net 
production divided by the total production. 

 

 
 

 
 

As discussed in the first paper, we will model the reactivity in 
terms of six contributing factors associated with the overall 
neutron life cycle. 
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Thinking About Reactivity Changes - The Six Factor Formular 
𝐾𝑒𝑓𝑓 = 	𝜖𝜌𝑃!𝑃"#𝑓𝜂 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fast Fission 
Factor 

𝜖 We will treat the fast fission factor as 
constant and nearly one.  This may not 
be true in all reactor types. 

Resonance 
Escape 

Probability 

𝜌(𝑇!$%&) As the temperature rises the resonance 
escape goes down.  This is related to a 
change in the probability that a 
neutron will be absorbed in the 
resonances. 

Fast Non-
Leakage 
Factor 

𝑃! =
1

1 + 𝐵!'𝐿!'
≅ 𝑒()!

"*!
"

 

 

𝐵!' =
(∇",!
,!

  Buckling (related to the 

degree of curvature of the fast flux)  
𝐿!' 	   Is the square of the fast diffusion 
length. 
𝐿!-."' = 𝐷!-."/Σ"/"-&

!-."   (Also known as 
the slowing down length.) 

Thermal Non-
Leakage 
Factor 

𝑃"# =
1

1 + 𝐵"#' 𝐿"#'

≅ 𝑒()#$
" *#$

"
 

 

𝐵"#' = (∇",#$
,#$

Buckling (Curvature of 
the thermal flux)  
𝐿"#' 	Is the square of the thermal 
diffusion length. 
𝐿"#' = 𝐷"#/Σ-"# 

Thermal 
Utilization 
Factor 

𝑓

=
Σ"/"-&
!$%&

Σ"/"-&
!$%& + Σ-

01%23"#456	0&.% 

The macroscopic cross section is 
Σ = 𝜎Ν(Temperature) ∝ 𝜌8-"%24-& 

Reproduction 
Factor 𝜂 =

νΣ!
!$%&

Σ-
!$%&  

This will change as the composition of 
the fuel shifts from U235 to Pu239. 
Neutrons created per thermal fuel 
absorption. 

Fast Fission  
𝜖 

Fast Non-
Leakage 

𝑃!

=
1

1 + 𝐵!"𝐿!"
 

 

Resonance 
Escape  
𝜌(𝑇!#$%) 

Reproduction 

𝜂 =
νΣ!

!#$%

Σ&
!#$%  

 

Thermal Non-
Leakage 

𝑃'(
=

1
1 + 𝐵'(" 𝐿'("

 

Thermal Utilization 
𝑓

=
Σ')'&%
!#$%

Σ')'&%
!#$% + Σ&

*+$,-'(./0	*%2$  
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Reactivity in terms of “Worths” 
 
When a sequence of small changes is made to the reactor, the perturbations 
are considered small enough that we may think of them as differentials. The 
total reactivity is the sum of these differentials.  
 

𝜌!"# = 𝜌$"%&"'(#)'" + 𝜌*+,- + 𝜌.+/-+0 + 𝜌1)"2	4)'0 +⋯ 
 	

𝜌!"# =
𝜕𝜌!"#
𝜕𝑇

∗ 𝑑𝑇 +
𝜕𝜌!"#
𝜕𝐻

∗ 𝑑𝐻 +
𝜕𝜌!"#
𝜕𝑃𝑜𝑖𝑠𝑜𝑛

∗ 𝑑𝑃𝑜𝑖𝑠𝑜𝑛

+
𝜕𝜌!"#
𝜕𝑃𝑜𝑤𝑒𝑟

∗ 𝑑𝑃𝑜𝑤𝑒𝑟⋯ 
 
 
Each of the partial derivatives here is given a name in the operational 
parlance of reactors: 
 

𝜕𝜌!"#
𝜕𝑇5(#"'

 
𝛼! 

Water temperature coefficient 

𝜕𝜌!"#
𝜕𝐻

 
Differential Rod Worth DRW 

𝜕𝜌!"#
𝜕𝑃𝑜𝑖𝑠𝑜𝑛

 
Differential Poison Worth 

𝜕𝜌!"#
𝜕𝑃𝑜𝑤𝑒𝑟

 
𝛼" 

Fuel temperature coefficient 
 
The last of these is also often expressed as: 
	

𝜕𝜌!"#
𝜕𝑇6)"2

𝑑𝑇6)"2	

	
This	later	form	is	useful	in	the	design	process	as	the	designer	computes	
the	fuel	temperature.	The	former	is	more	useful	to	the	operator	because	
it	allows	direct	computation	based	on	changes	in	the	overall	reactor	
power. 
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Buckling and Criticality 
 
If we go back to the neutron diffusion equation, we developed an equation 
for energy groups with spatial variation within the reactor.  Now suppose 
there were only two groups and suppose that the system is in steady state: 
the time derivative vanishes, and the delayed neutrons are combined with the 
prompt neutrons as a constant source. Let the reactor have a uniform 
composition, so the material properties are all the same over the volume of 
the reactor. 
 
Ignoring fast fission and thermal group up scattering, we could write the two 
equations as: 
  

0 = D!-."∇'𝜙!-." − F	Σ𝑎𝑓𝑎𝑠𝑡 + Σ𝑠1→2G𝜙!-." + 𝜈Σ𝑓
𝑡ℎ𝜙"# + 𝜈Σ𝑓

𝑓𝑎𝑠𝑡𝜙!-." 

0 = D"#∇'𝜙"# − Σ𝑎𝑡ℎ𝜙"# + Σ𝑠1→2𝜙!-." 
 
These equations have a solution where the two fluxes are proportional to 
each other.  In this case the fast and thermal buckling are the same. 
 
With this idea let 𝐵+ = ,∇0.1

.1
= ,∇0.23

.23
 and 𝑅 = 𝜙/0/𝜙"12/ 

 
0 = −D!-."𝐵' − F	Σ𝑎𝑓𝑎𝑠𝑡 + Σ𝑟𝑓𝑎𝑠𝑡G+ 𝜈Σ𝑓

𝑡ℎ𝑅 Σ/4/15
"12/ = Σ1

"12/ + Σ6
"12/ 

0 = −D"#𝐵'𝜙"# − Σ𝑎𝑡ℎ𝜙"# + Σ𝑟𝑓𝑎𝑠𝑡𝜙!-." Σ6
"12/ Is the removal cross section 

from the fast group. 
 
So 

𝐿!-."' 𝐵' + 1 = 𝜈Σ𝑓
𝑡ℎ𝑅/	Σ𝑡𝑜𝑡𝑎𝑙

𝑓𝑎𝑠𝑡  𝐿!-."' = 𝐷!-."/Σ𝑡𝑜𝑡𝑎𝑙
𝑓𝑎𝑠𝑡  

𝜙"#/𝜙!-." = 𝑅 = +Σ𝑟𝑓𝑎𝑠𝑡/Σ𝑎𝑡ℎ

𝐿"#' 𝐵' + 1
 

𝐿"#' = 𝐷"#/Σ𝑎𝑡ℎ 

 
And this gives the criticality condition: 
 

(𝜈Σ"/0/	Σ/4/15
"12/ )(	Σ6

"12//Σ1/0)(
9

:𝐿𝑓𝑎𝑠𝑡2 𝐵2+1;:𝐿𝑡ℎ2 𝐵2+1;
) = 1 

Or we could write: 
<4

:𝐿𝑓𝑎𝑠𝑡2 𝐵2+1;:𝐿𝑡ℎ2 𝐵2+1;
= 𝐾=𝑃𝑓𝑃𝑡ℎ	= 1 
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We have developed a simplified expression for the conditions for criticality 
in a homogeneous system.  The 𝐾= is a property of the homogeneous 
medium for a given set of material properties such as temperatures, 
pressures, and concentrations.   
 
The non-leakage factors are a function of the geometry of the reactor as well 
as the properties of the medium.  It develops that the diffusion constants are 
approximately: 𝐷>,@0 =

9
	BC5

6,83  hence 𝐿 ∝ 1/𝜌@-"%2 	 for both the fast and 

thermal groups.  So, for example, if temperature goes up, 𝜌@-"%2  goes down 
so Lfast and Lthermal go up.  Physically this means that loss by leakage will go 
up. 
 
So, what is the buckling?  
 

𝐵' =
−∇'𝜙"#
𝜙"#

 

 
This expression gives an indication of the curvature of a scalar flux of 
multiple variables. If  𝐵' is positive the flux will be concave.  This is a 
neutron producing region.  If the quantity is negative, the flux will be 
concave, and we will have a neutron absorbing region.  In the later case B 
would be a complex number. 
 
For either the fast or thermal flux we have the following. 
 

∇'𝜙 + 𝐵'𝜙 = 0 

 

To understand the implications of this equation, remember that we used 
Fick’s law, 𝐽 = 	−𝐷∇JJ⃗ 𝜙	and the divergence theorem ( 𝑛L  is unit outward 
normal to the surface bounding the volume.), This 𝐽 is the vector flux in 
some direction, the number of neutrons crossing a unit surface per cm^2 
sec.: 
 

M ∇ ∗ J⃗	𝑑𝑉 =N 𝐽⃗ ∗ 𝑛L𝑑𝑆 = 	−M 𝐷∇2𝜙𝑑𝑉 

 
Using this we can observe that the buckling within a constant factor, is the 
fractional leakage of the neutrons in a volume per second: 
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𝐵+ =	
𝐷∬ 𝐽 ∗ 𝑛L𝑑𝑆
∭𝜙𝑑𝑉

 

 
We will solve 		∇'𝜙 + 𝐵'𝜙 = 0  assuming that the flux is near zero on the 
boundary of our physical reactor.  (A better approximation is to extend the 
outer boundary slightly, but we shall ignore this.)  

 
In Cartesian coordinates 	

∇'𝜙 + 𝐵'𝜙 = 0 

has a solution  
 

𝜙(𝑥, 𝑦, 𝑧) = 𝐴 cos(𝐵B𝑥 + 𝛿B) cosY𝐵3𝑦 + 𝛿3Z cos(𝐵C𝑧 + 𝛿C) 

 
Now suppose that we have a rectangular solid reactor with the origin at the 
center with each dimension extending from -L{x,y,z}/2 to L{x,y,z}/2., this would 
force 𝛿4 = 0 and define all the Bx,y,z. (n, m, p are integers 1,3,…) 

 
𝜙(𝑥, 𝑦, 𝑧) = 𝐴 ∗ cos(𝑛𝜋𝑥/𝐿B) cosY𝑚𝜋𝑦/𝐿3Z cos(𝑝𝜋𝑧/𝐿C) 

 

With this the buckling of the first mode n=m=p=1 is: 
 

𝐵+ = 	𝐵D+ + 𝐵E+ + 𝐵F+ = (
𝜋
𝐿D
)+ + (

𝜋
𝐿E
)+ + (

𝜋
𝐿F
)+ 

Higher order modes can exist in some circumstances, but we will not discuss 
this now. These higher modes do not persist. 
 
If we worked this out for a cylindrical reactor we would get 
  

𝜙(𝑥, 𝑟) = 𝐴 ∗ sin F
𝜋𝑥
𝐻 G JD(

2.405𝑟
𝑅 ) 𝐵+ =	 (

2.405
𝑅

)+ + (
𝜋
𝐻
)+ 

 
   

 
JD	 is the zeroth order Bessel function, H is the height of the cylinder, and R 
is its radius. The origin here is on the axis halfway up. 
 
As noted above, if a region has a weak supply of fission neutrons, the losses 
dominate the problem, and an external source is required to prevent a zero-
flux in steady state.  In this case 𝐵+ < 0 so B is complex which leads to 
solutions involving the sinh(x) and cosh(x).  This happens if we consider a 
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two-region core, one rodded and one not rodded. As a rule, a region of the 
core that is neutron producing overall will have a convex flux, regions that 
are loss dominate will be concave. 
 
How Does the Temperature Reactivity Behave? 

 
Consider first a change in Tave.  What happens as temperature goes up in the 
reactor: 
 

• 𝑇𝑎𝑣𝑒 ↑ 	 𝜌G+H ↓ 𝐿 ↑ 𝐿𝑒𝑎𝑘𝑎𝑔𝑒	 ↑ 𝐾I"" ↓ 			 𝜌JI/ ↓			This	must	
dominate	

• 𝑇𝑎𝑣𝑒 ↑ 	 𝜌G+H ↓ 	 Σ1G+H ↓ 𝐾I"" ↑ 	 𝜌JI/ ↑																 			
• 𝑇𝑎𝑣𝑒 ↑ 	 𝜌G+H ↓ 	 Σ1K464L ↓ 𝐾I"" ↑ 	 𝜌JI/ ↑	

 
Here we are using two ideas: 
 
Non-Leakage:  
 𝑃! =

1
1 + 𝐵!'𝐿!'

 

 𝑃"# =
1

1 + 𝐵"#' 𝐿"#'
 

Thermal Utilization:  
 

𝑓 =
Σ"/"-&
!$%&

Σ"/"-&
!$%& + Σ𝑎𝐻2𝑂+ Σ𝑎𝐵𝑜𝑟𝑜𝑛+ Σ-

01%23"#456	0&.%
 

 
So, with temperature the reactivity could go either way.  Most designs 
attempt to have the first effect (leakage) dominate. so  
 

𝛼! =
𝜕𝜌QI1R/STS/E	JI/

𝜕𝑇
< 0	𝑖𝑛	𝑚𝑜𝑠𝑡	𝑐𝑎𝑠𝑒𝑠	 

 
 

𝜕𝜌QI1RS/STS/E	JI/
𝜕𝑇

= 	
𝜕(1 − 1

𝐾𝑒𝑓𝑓)

𝜕𝑇
=

1
𝐾𝑒𝑓𝑓+

𝜕𝐾𝑒𝑓𝑓
𝜕𝑇

= 	
1
𝐾
l
1
𝜌QI2

𝜕𝜌QI2
𝜕𝑇

+
1
𝑃"

𝜕𝑃"
𝜕𝑇

+
1
𝑃/0

𝜕𝑃/0
𝜕𝑇

+
1
𝑓
𝜕𝑓
𝜕𝑇
n 
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We will ignore the  
7
8

  term here because it is very close to one. 
𝜌QI2 Is the resonance escape probability.  Here we have used: 
 

𝐾𝑒𝑓𝑓 = 	𝜖𝜌𝑃!𝑃"#𝑓𝜂 
 
 
Leakage contribution 
 

If we approximate E
EF)!

"*!
" 	𝑎𝑛𝑑	

E
EF)#$

" *#$
" 	as 𝑒,U1

0K0 and 𝑒,U23
0 K0 then the leakage 

terms become −𝐵+(2𝐿"
VU1
V@
+ 2𝐿/0

VU23
V@
) and the diffusion lengths are 

inversely proportional to 𝜌!1/I6 so these terms are  
 

−𝐵' F2𝐿!
G*!
GH
+ 2𝐿"#

G*#$
GH
G = 2𝐵'(𝐿!' + 𝐿"#' )

E
I+,#-.

𝜕I+,#-.
𝜕𝑇   

 
Thermal Utilization Contribution 
 

𝑓 = 	
Σ9:9;<
=>?<

Σ9:9;<
=>?< + Σ;

@A?BC9DEFG	@<I? =	
Σ9:9;<
=>?<

Σ9:9;<
=>?< + Σ;J:FK;9?B + Σ;LFK;9?B

 

 

Then 
9
"
V"
V@
=	 ,Σ𝑎𝐼𝑛𝑊𝑎𝑡𝑒𝑟/𝜌𝑤𝑎𝑡𝑒𝑟

Σ𝑡𝑜𝑡𝑎𝑙
𝑓𝑢𝑒𝑙 +Σ𝑎𝑁𝑜𝑛𝑊𝑎𝑡𝑒𝑟+Σ𝑎𝐼𝑛𝑊𝑎𝑡𝑒𝑟

V𝜌𝑤𝑎𝑡𝑒𝑟
V@

 

 
Now we know that V𝜌𝑤𝑎𝑡𝑒𝑟

V@
< 0.  Using the absolute value: 

𝛼M;9?B = '−2𝐵N+𝐿=N + 𝐿9DN - +
1

(Σ9:9;<
=>?< + Σ;J:FK;9?B)/(Σ;K;9?B + Σ;O:B:F) + 1

2 3
1

𝜌M;9?B
𝜕𝜌M;9?B
𝜕𝑇

3 

 

(𝐿"+ + 𝐿/0+ )  will be proportional to  o 9
YPQ2RS

p
+

 and Σ1Z1/I6 + Σ1K464L  will be 
proportional to 𝜌!1/I6. 
 
Note that this equation is derived for a homogeneous un-reflected reactor.  We 
will treat Σ9:9;<=>?< + Σ;J:FK;9?B  as not a function of 𝜌M;9?B .   None the less it is 
instructive in understanding how 𝛼!1/I6 varies. We can see that: 

• The	 magnitude	 (negative)	 will	 become	 smaller	 as	 a	 reactor	
becomes	larger.	

o A	larger	reactor	design,	lower	buckling.	
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o Rods	 being	 pulled	 out	 in	 a	 bank	 over	 core	 life	 lowers	
buckling.	

• Increasing	the	amount	of	water	relative	to	the	other	adsorbers	will	
reduce	the	magnitude	if	𝛼M;9?B 				was	initially	negative.		

• 7 T
U!"#$%

VU!"#$%
VW

7 		 Increases	 with	 water	 temperature.	 	 Also	 𝐿"+ + 𝐿/0+ 	
increase	with	water	 temperature	 so	we	 expect	 a	more	 negative	
𝛼M;9?B	at	operating	temperature	than	we	would	in	a	colder	reactor.	
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Define a value   Ψ = (Σ9:9;<

=>?< + Σ;J:FK;9?B)/(Σ;K;9?B + Σ;O:B:F).   This is the ratio of 
metal born absorbers to water borne absorbers.  Further recognize that the 

quantity  𝛽!1/I6 = r 1

𝜌𝑤𝑎𝑡𝑒𝑟

𝜕𝜌𝑤𝑎𝑡𝑒𝑟
𝜕𝑇
r  is a tabulated value. Now because the 

diffusion lengths depend inversely on the density of water, we will establish 
those as  𝐿" = 	𝐿"[𝜌[/𝜌,   𝑎𝑛𝑑	𝐿/0 = 	𝐿/0[𝜌[/𝜌. Also, the water born cross 
sections will depend directly on the water density so: 

Ψ =	Ψ[𝜌[/𝜌 

𝛼M;9?B = '−2𝐵N(𝐿=YN + 𝐿9DYN )𝜌0/𝜌 +
1

Ψ0𝜌0/𝜌 + 1
2𝛽𝑤𝑎𝑡𝑒𝑟 

 
Assume the following purely hypothetical numbers: 
 

Lf0 6 cm (500°F) 
Lth0 4 cm (500°F) 
H  130 cm 
R 80 cm 
T0 500 °F 

 
This yields a buckling of  

	
𝐵+ =	 (+.`[a

Q
)+ + (b

G
)+ =	0.0015. 

 
Putting it all together we get the following example: 
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Psi is proportional to the metal to water ratio in the system.  As Psi goes up 
the temperature coefficient tends towards the negative.  
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The discussion provided above represents an un-reflected uniform core. Real 
cores are not uniform and present a much more complex situation.  In some 
cases, neutron poisons are installed as pins or control rods.  To a degree 
these act as internal leakage surfaces and help to make 𝛼M;9?B negative.  
Below observe an actual 𝛼M;9?B plot for an operating reactor design.  We can 
see the impact of temperature and boron in these plots. 
 

Moderator Temperature Coefficient Westinghouse SNUPS Plant 

 
 
BOL is Beginning of life 
EOL is end of life 
1pcm is 1.0e-5 
 
For cores that maintain all rods out and control with boron concentration, as 
the core ages fuel reactivity is reduced. The amount of boron needed is 
reduced so the positive contribution to 𝛼! is reduced.  Remember these 
reactors are run with rods fully out most of the time. 
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Reactivity related to Fuel Temperature  

(Resonance Escape - Reactor Power) 
 

 
 
Many isotopes have cross sections that vary significantly with neutron 
energy. As shown here for U-238, there is a region from about 1ev to about 
10kev with high neutron resonances.  The atoms exist within the fuel matrix 
and the matrix temperature is related to the vibrational energy of the atoms.   
In low enrichment cores this has a major impact on the resonance escape 
probability and hence on reactivity. 
 

o The	atoms	each	have	resonant	peaks	
o The	atoms	actually	vibrate	randomly	with	a	distribution	of	
energies	given	by	statistical	mechanics.	

o As	such	a	given	neutron	is	presented	an	energy	window	for	
capture	in	a	specific	resonance	that	is	larger	than	the	width	
of	the	resonance	in	the	reference	frame	of	the	atom.	

 
In computing the resonant absorption probability and the resonant escape 
probability the product of the energy dependent flux is multiplied by the 
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cross section for a resonance and integrated over the energy.  The 
broadening of the peak in this product results in larger adsorption at higher 
temperature.   In the case of this neutron adsorption, this is known as doppler 
broadening. 
 
The fuel temperature rises as core power rises.  The Power Coefficient of 
reactivity, 𝛼> is expressed in one of two ways depending upon its 
application.  If the power level is being used to specify the resultant 
reactivity, 	𝛼> will have units related to pcm/power.  In this use the 
assumption is made that the temperatures in the fuel and related structure 
reach equilibrium in zero time.   
 

Δ𝜌"cI5 =	𝛼>(𝑃 − 𝑃[) 
 
 
 
Alternatively, the Power Coefficient of reactivity, 𝛼>, may be expressed in 
pcm/temperature.  This form of the coefficient is used for computing 
transient behavior in fuel. 
 

Δ𝜌"cI5 =	𝛼>𝛿𝑇"cI5 
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Computing Reactivity and Power in the Presence of 𝛼! 
 
Consider a prompt jump-based computation. Here we are assuming the left-
hand side of the first reactor kinetics equation is zero and basing the 
transient calculation on an initial discontinuity in power followed by a 
solution to the precursor differential equations. This then uses an algebraic 
power calculation.  We will use the power-based reactivity calculation, 
Δ𝜌"cI5 =	𝛼>(𝑃 − 𝑃[). 
 
We have: 

𝑃 = 	
Λ∑ 𝜆S𝐶SS + Λ𝑆

𝛽 − Δ𝜌"cI5 − 𝜌4/0I6
 

 
So, we need to solve these two equations for P and Δ𝜌"cI5. 
 

Let c = 		d∑ fZZ gZ(/)jdk
l6

 and 𝑏 = (,mjY[23RS,	l1n\)
l6

  with these definitions we 
have a quadratic equation in power.  
 

𝑃(𝑡)+ + 𝑏𝑃(𝑡) + 𝑐 = 0 
So 

𝑃(𝑡) = o−𝑏 + |𝑏+ − 4𝑐p /2 
 

The negative radical is rejected because power is positive, and b must be 
positive to meet the restrictions of the prompt jump assumption. 
 
Finally: 

Δ𝜌"cI5 =	𝛼>(𝑃(𝑡) − 𝑃[) 
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Reactivity Examples 
 
Consider the following data: 
 

• The	Fuel	Reactivity	power	coefficient	is:	𝛼M =	−10	pcm/(%	power).			
• The	Temperature	coefficient	is:	𝛼H = −20	pcm/	°F			
• The	initial	Tave	is	taken	as	500°F.	
• Rod	Reactivity	+40	pcm/inch	out.	One	Step	is	5/8	inch.	

	
a. Suppose	a	transient	happens	in	which	power	is	increased	by	25%,	and	Rods	

are	pulled	8	steps	out.		What	will	happen	to	plant	temperature	in	the	final	
steady	state?	
	
The	temperature	reactivity	needs	to	balance	the	net	reactivity	inserted.	
	
Needed	temperature	reactivity	to	cancel	reactivity	change	=		
									-[	(-10	pcm/%	*	25%)	+40	pcm/in	*	5/8	in/step	*8	steps)]=	-50	pcm	
	
	
Needed	temperature	reactivity	=	-50	
∆T	=	-50	pcm/(-20	pcm/	°F)	=		2.5°F	
	

b. A	plant	has	a	steady	startup	rate	of	1	dpm	below	the	point	of	adding	heat.		
How	much	reactivity	is	present?		How	much	reactivity	will	remain	when	
power	turns	if	the	heat	up	rate	is	0.092	°F/sec	at	its	peak?			
Assume:		𝛽 = 640	𝑝𝑐𝑚	𝑎𝑛𝑑	𝜆%!! =

D.E
.%O
.	Ignore	sources	and	changes	in	𝜆%!! .	

	

𝑆𝑈𝑅 = 26.06	𝑑𝑝𝑚 − 𝑠𝑒𝑐 r
𝜌̇ + 𝜆%!!𝜌
𝛽 − 𝜌 t	

𝜌

= 	

𝑆𝑈𝑅	𝛽
(26.06𝑑𝑝𝑚 − 𝑠𝑒𝑐) − 𝜌̇

𝜆%!! +
𝑆𝑈𝑅

(26.06𝑑𝑝𝑚 − 𝑠𝑒𝑐)
	

a) 𝜌̇ = 0, 𝑆𝑈𝑅 = 1	𝑑𝑝𝑚, 𝜆%!! = 0.1/𝑠𝑒𝑐	
	

𝜌 = 177.48	𝑝𝑐𝑚	

b) 𝜌̇ = 𝛼H ∗ 0.092°
P
QRS

=	−1.84	 TO8
.%O
	

c) SUR	 = 	0.0	dpm	
	

𝜌 = 18.46	𝑝𝑐𝑚	

	
Keep	in	mind	that	in	each	case	where	we	are	using	the	one	delayed	group	
approximation	our	numbers	should	be	considered	suspect	at	best.		The	
failure	to	account	for	𝜆%!!̇ /𝜆%!!	leads	to	significant	error.	
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	 19	

2. Interaction of Water Volumes and Temperature 
 

 

Each water volume has a heat capacity. 
We combine the reactor volume with the 
hot leg and the steam generator volume 
with the cold leg such that there is a heat 
capacity for each, Cr and a Cs.  Heat flows 
into the system from the reactor and out of 
the volume from the steam generator. 

 
The kinetics Equations will be the same as they were in the low power (no 
feedback) operations section of the course (with reactor power less than the 
point of adding heat). 
 
When power is high enough to impact the temperature, this will impact the 
temperature reactivity.  The temperature of the system is a function of the 
steam demand history and power history.  The difference between the power 
and the steam demand is the “mismatch”. 
 
If (Power – Steam Demand > 0) Heat is added to the coolant and 
temperature goes up. 
 
If (Power – Steam Demand < 0) Heat is removed from the coolant and 
temperature goes down. 
 
In this case we are looking at this as two water masses, reactor and steam 
generator ignoring the pipe transport times.  Hot side water from the reactor 
flows into the steam generator and water from the cold side of the steam 
generator flows into the reactor.  So, for example water coming from the 
reactor would heat the steam generator and heat removed by steam would 
cool the steam generator.  The water is force along the system by a pump 
and we will ignore any heat introduced by the pump. 
 
The rates of change of the hot and cold leg temperatures are proportional to 
the difference between the water entering each volume and the water leaving 
the volume.  If this difference is positive the temperature will rise (positive 
derivative) otherwise it will fall (negative derivative).  For the reactor the 
water leaving is 𝑇0 and the water entering is 𝑇R . The reverse is true for the 
steam generator.  The heat introduced to the reactor when divided by the 
heat capacity of the water in the reactor is a positive contribution to the rate 
of change of temperature.  The heat removed from the steam generator 

Reactor

Th

Steam	
Generator

Tcold



	 20	

divided by its heat capacity contributes a negative contribution to the steam 
generator. 
 
Each volume is experiencing a “fill and drain” transient.  If we held the 
temperature of the incoming water constant and ignored any other heat 
introduction, the temperature of that volume would be a transient from its 
initial temperature to the temperature of the entering water with an 
exponential transient: 
 
𝑇0(𝑡) = 𝑇0SLS/S15𝑒,//pS + 𝑇R(1 − 𝑒,//pS) 𝜏! =	

𝑅𝑒𝑎𝑐𝑡𝑜𝑟	𝑊𝑎𝑡𝑒𝑟	𝑉𝑜𝑙𝑢𝑚𝑒
𝑅𝑒𝑎𝑐𝑡𝑜𝑟	𝑊𝑎𝑡𝑒𝑟	𝐹𝑙𝑜𝑤	𝑅𝑎𝑡𝑒 

 
We will ignore the change in water density that this change in temperature 
creates.  So, we will directly relate system volume with water mass.   
 
 

𝑑𝑇0
𝑑𝑡

= 	
𝑇R − 𝑇0
𝜏6

+	
𝑃6
𝐶6

 

 

𝜏6 and 𝐶6	apply to the source 
including the hot side piping.  Both 
quantities are proportional to the 
mass of the water that is contained 
in the volume.  (We will ignore the 
effects of the metal for now.) 

𝑑𝑇R
𝑑𝑡

= 	
𝑇0 − 𝑇R
𝜏2

−	
𝑄2
𝐶2

̇
 

 

𝜏2 and 𝐶2	apply to the steam 
generator including the mass of 
water within the cold side piping. 
The values of 𝑃6	𝑎𝑛𝑑 𝑄2̇ are 
positive. 

  
We will ignore the change in water density that this change in temperature 
creates.  So, we will directly relate system volume with water mass.   
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So, with these concepts put together, we can write the following matrix 
equations for our coupled reactor, steam generator system. 
 

𝑇 = 	 �𝑇0𝑇R
� 𝐴 = �−1/𝜏6 1/𝜏6

1/𝜏2 −1/𝜏2
� 

𝐵 = 	

⎣
⎢
⎢
⎢
⎡
𝑃6
𝐶6

−	
𝑄2
𝐶2

̇
⎦
⎥
⎥
⎥
⎤
 

𝑑𝑇
𝑑𝑡

= 𝐴𝑇 + 𝐵 𝑇(𝑡) = 	 𝑒q/𝑇[ + 𝑒q/� 𝑒,q/r ∗ 𝐵	𝑑𝑡′
/

[
 

  
A is singular, the eigenvalues are zero and −1/𝜏I"" where 𝜏I"" =

pSp5
pSjp5

. 
The steady state difference in the two temperatures will be proportional to 
the sum of the reactor and steam generators (both taken as positive). 
 

Δ𝑇 = 𝜏𝑒𝑓𝑓(
𝑃𝑟
𝐶𝑟
+𝑄𝑠𝐶𝑠

̇
) 

 
The steady state average temperature with 𝑃6 = 𝑄2̇ is best found using 
conservation of energy: 
 

𝑇9:; =	𝑇9:;<=<><?@ +	
𝜏;AA
2 x

𝑃𝑟
𝐶𝑟

−
𝑄𝑠̇
𝐶𝑠

z 	= 𝑇9:;<=<><?@ +	
	𝜏;AA𝑃𝑟

2 {
1
𝐶𝑟
− 1
𝐶𝑠

| 

 
The heat capacities and the time constants are proportional to mass. We may 
define the fraction of the total mass of fluid that is within the reactor as 𝜇, 
and we have: 
 

𝜏6 = 	𝜇𝜏[,		𝜏2 = (1 − 𝜇)𝜏[,		𝐶6 = 	𝜇𝐶[,	𝐶2 = (1 − 𝜇)	𝐶[, 
 

 
Using these definitions, the average temperature becomes as derived below: 
 

𝑇qTI 	= 𝑇qTISLS/S15 −	
	𝜏[𝑃6(2𝜇 − 1)

2𝐶[	
 

 
 
  



	 22	

The steady, state mass weighted average temperature will be constant.  This 
is what causes the Tave to droop or rise when the hot and cold legs have 
different volumes:  
 

𝜇𝑇0 + (1 − 𝜇)𝑇R =	𝑇qTISLS/S15 

𝜇𝑇0 + (1 − 𝜇)𝑇R −
𝑇0 + 𝑇R
2

= 	𝑇qTISLS/S15 − 𝑇qTI
"SL15 

𝜇(𝑇# − 𝑇O) + 𝑇O −
𝑇# + 𝑇O
2 = 	𝑇U1%454"4-& − 𝑇U1%

!45-& 

Δ𝑇 = 𝜏𝑒𝑓𝑓 x
𝑃𝑟
𝐶𝑟
+𝑄𝑠𝐶𝑠

̇
z= 𝜇(1− 𝜇)𝜏0	𝑃𝑟

𝜇+ (1− 𝜇) ∗ { 1𝜇𝐶0	+
1

(1− 𝜇)𝐶0	
|= 𝜏0	𝑃𝑟

𝐶0	
 

𝜇Δ𝑇−
Δ𝑇

2 = 	𝑇U1%454"4-& − 𝑇U1%
!45-& 

(2𝜇 − 1)
2 𝜏D	𝑃2/𝐶D	 =	𝑇U1%454"4-& − 𝑇U1%

!45-& 

 
This is equivalent to saying that if the heat flow in and out of the system is 
balanced, the total energy in the system remains constant. 
 
For the case where the reactor and steam generator are both constant loads 
(balanced or not), the two temperatures may be computed as follows: 
 
𝜏%!! =

𝜏2𝜏.
𝜏2+𝜏.

 𝑈 =
𝐼

𝜏%!!
+ 𝐴 𝐼 = 	 �1 0

0 1� 
𝑒U" =		 𝐼 + 𝜏%!!(1 − 𝑒("/W-!!)𝐴 

𝐵 = �

𝑃𝑟
𝐶𝑟

−
𝑄𝑠
𝐶𝑠

̇ � 
𝐾(𝑡) = � 𝑒−𝐴𝑡′ ∗ 𝐵	𝑑𝑡′

𝑡

0
= �𝑡	𝜏%!!𝑈 + 𝜏%!!' �𝑒

"
W-!! − 1� 𝐼� 𝐴𝐵 

�𝑇#𝑇O
� = 𝑒U" �𝑇#𝑇O

�
D
+	𝑒U"𝐾(𝑡) 

  
This equation will have serious numerical problems computationally due to 
the positive exponent in the K(t) factor.  This may be remedied using the 
following equivalent formulation. 
 
Y𝐼 + 𝜏%!!𝐴Z𝐴 = 0 

�𝑇#𝑇O
� = 𝑒U" �𝑇#𝑇O

�
D
+ 𝑡	𝜏%!!𝑈𝐵) − 𝜏%!!' ∗ �1 − 𝑒

(Z "
W-!!

[
�𝐴𝐵 

  
If the heat flows between the steam generator and reactor are balanced, then 
the factor 𝑈𝐵 = 0	so the term that is linear in t will vanish.  In this balanced 
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case the final 𝑇qTI
"SL15 =	𝑇qTISLS/S15 − [0.5,0.5] ∗ 𝜏I""

+𝐴𝐵.  This simplifies to 
the same equation for the steady state average temperature that we found 
above. 
 
The expression for 𝑒q/ above was developed by finding the eigenvalues, 
{𝑑S} and modal matrix, M, related to the A matrix and then following reverse 
diagonalization, (See Note 6): 
 

𝑒q/ = 𝑀	𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑒�	/)	𝑀,9 
 

The equation K(t) represents the integral factor: 
 

� 𝑒,q/r ∗ 𝐵	𝑑𝑡′
/

[
 

 
The integral term has been computed assuming that both heat flow rates are 
constant in time.  If this is not the case, K(t) will need to be recomputed.  
Performance of this integral is greatly simplified by using the form 
developed for 𝑒U"	 above. 
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Example: 
 
Consider a system where Δ𝑇100% = 75	℉, 𝜏[ = 50.  With full power being 
100% the base heat capacity,	𝐶[, = 100% ∗ p[

Δ𝑇100%
= 66.66	[%	 − sec/°F]. 

  
Using the equation above we find the following. 
 

Equal 
Masses 

  
Unequal 
Masses 
𝜇 = 0.75 
 

  
 
 
Loop Transport Time 
 
This presentation has ignored the effects of loop transport time within the 
reactor/steam generator system.  This may be modeled effectively as a time 
delay in both legs of the system.  This phenomenon is discussed in “Note 3” 
at the end of this document.  The impact of the delays is discussed and then 
analyzed using Laplace (frequency domain) analysis.   
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MATLAB Code 
 
What follows are MATLAB codes that can make plots for the hot, cold, and 
average temperatures in this problem.  They also plot the difference between 
Th and Tc. 
 
The first version of this code uses the equations that we have developed for 
the various steps in this effort.  The second version uses a MATLAB ODE 
solver to directly integrate the differential equations.  The two methods 
produce the same result. 
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% LoopTimeDomainPowerStepTransient.m 
% William Locke 
% July 2025 
% 
% This code demonstrates the temperature performance of a  
% coupled heat transfer system with unequal water mass loops. 
% The 2 by N matrix holds the hot and cold temperatures 
% as the transient happens. 
function LoopTimeDomainPowerStepTransient() 
    N = 1000; 
    Tfinal = 150; 
    Pr = 100;  Q_dot = 100; 
    RMF = 0.75;  % Fraction of the water that is in the reactor. 
    Tau = 50; Tau_r = RMF*Tau; Tau_s = (1-RMF)*Tau; 
    C = 2/3*100;  Cr = RMF*C;  Cs = (1-RMF)*C; 
    Teff = Tau_r*Tau_s/(Tau_r+Tau_s); 
    B = [Pr/Cr;-Q_dot/Cs]; 
    A = [-1/Tau_r, 1/Tau_r;1/Tau_s, -1/Tau_s]; 
    U = eye(2)/Teff+A; 
    T = zeros(2,N); 
    To(:,1) = [450;450]; 
    t = zeros(N,1); 
    for i=1:N 
        t(i) = (i-1)/(N-1)*Tfinal; 
        EAT = eye(2)+Teff*(1-exp(-t(i)/Teff))*A; 
        T(:,i)= EAT*(To+ t(i)*Teff*U*B) -... 
            Teff^2*(1-exp(-t(i)/Teff))*A*B;   
    end 
    figure 
    plot(t,T(1,:),'r',t,T(2,:),'b',t,(T(1,:)+T(2,:))/2,'--k') 
    title("T_{hot}, T_{cold}, and T_{Ave} for a Step Transient"); 
    xlabel("Time (sec)"); 
    ylabel("Temperature \circF"); 
    legend("Thot","Tcold","Tave") 
    figure 
    plot(t,T(1,:)-T(2,:)) 
    title("\DeltaT for a Step Transient"); 
    xlabel("Time (sec)"); 
    ylabel("Temperature \circF"); 
    Final_Delta_T_Ave = 450+(T(1,end)+T(2,end))/2 -(To(1)+To(2))/2   
     
end 
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% LoopTimeDomainPowerStepTransientODE.m 
% William Locke 
% July 2025 
% 
% This code demonstrates the temperature performance of a  
% coupled heat transfer system with unequal water mass loops. 
% The 2 by N matrix holds the hot and cold temperatures 
% as the transient happens. 
function LoopTimeDomainPowerStepTransientODE() 
    N = 1000; 
    Tfinal = 150; 
    Pr = 100;  Q_dot = 100; 
    RMF = 0.75;  % Fraction of the water that is in the reactor. 
    Tau = 50; Tau_r = RMF*Tau; Tau_s = (1-RMF)*Tau; 
    C = 2/3*100;  Cr = RMF*C;  Cs = (1-RMF)*C; 
    Teff = Tau_r*Tau_s/(Tau_r+Tau_s); 
    B = [Pr/Cr;-Q_dot/Cs]; 
    A = [-1/Tau_r, 1/Tau_r;1/Tau_s, -1/Tau_s]; 
    function dTdt = TargetFunction(t,T) 
        dTdt = A*T+B; 
    end 
    T = zeros(2,N); 
    To(:,1) = [450;450]; 
    [t,Thist] = ode45(@TargetFunction,[0,Tfinal],To(:,1)); 
    T = Thist'; 
    figure 
    plot(t,T(1,:),'r',t,T(2,:),'b',t,(T(1,:)+T(2,:))/2,'--k') 
    title("T_{hot}, T_{cold}, and T_{Ave} for a Step Transient"); 
    xlabel("Time (sec)"); 
    ylabel("Temperature \circF"); 
    legend("Thot","Tcold","Tave") 
    figure 
    plot(t,T(1,:)-T(2,:)) 
    title("\DeltaT for a Step Transient"); 
    xlabel("Time (sec)"); 
    ylabel("Temperature \circF"); 
     
    Final_Delta_T_Ave = (T(1,end)+T(2,end))/2 -(To(1)+To(2))/2 
end 
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3. Steam and Reactor Power Dynamics in a Thermal Reactor 

 

Time Spent on the Big Picture 
 
What happens when we draw more steam off a reactor (increase steam flow) 
 
Start in steady state Reactor Power = Steam demand, Temperature is 
constant. Pressurizer level is Constant 

• Open	the	Main	Steam	Valve	
• Flow	in	the	steam	system	goes	up.	Steam	Pressure	Drops	
• More	boiling	happens	in	the	steam	generator	because	the	
pressure	dropped.	

• Average	Temperature	in	the	Steam	Generator	(steam	side)	goes	
down.	

• Heat	transfer	across	the	Steam	Generator	tubes	goes	up.	
• Tc	drops,	Th	is	the	same	for	the	moment.	
• When	the	colder	water	reaches	the	reactor,	positive	reactivity	is	
inserted.	

• Reactor	Power	goes	up	which	increases	Th,	this	raises	Tave.	
• Steady	state	will	have	a	larger	delta	T,	(Th-Tc),	reactor	power	will	
match	steam	demand.	

• If	we	are	using	high	enrichment	fuel,	the	Tave	will	be	recovered	to	
its	original	value.		If	we	are	using	low	enrichment	fuel,	Tave	will	
drop	due	to	doppler	broadening.		A	boron	or	rod	adjustment	will	
be	needed.	

 
The pressurizer will have had an out surge during this transient. 
The power may or may not have damped oscillation around the final value. 
 
Whenever reactor power is greater than steam demand Tave will go up.   
Whenever reactor power is less than steam demand Tave will go down.   
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Nonlinear Equations 
 
The effect of a time variable reactivity is that the solution will not have the 
form 𝑒q/ as before.  That solution required linear equations without time 
variation in the coefficients. 
 
We can still think in terms of a matrix and vector based coupled system.  
The solvers that we will use will be mathematical methods that will be 
chosen based of the numerical difficulties of the problem.  If the prompt 
jump assumption is used and the reactivity is far from 𝛽	we will generally 
get good results.  This makes an eighth order system of coupled equations (6 
– reactor kinetics, and two temperature). 
 
When using MATLAB, the function ode45()(with ‘RelTol’ set to 1e-6) is 
usually sufficient for making this solution method with the prompt jump 
assumption. If Numerical noise appears in the data ode15s() is 
recommended. 
 
As an alternative to this approach, one could also approximate the solutions 
to these equations by using a home grown fourth order Runge-Kuta or even 
by using an iterate solution of the following form. 
 

𝑋_ = (𝐼 − (𝐴/2)𝜏."%T
[.%O])(E((𝐼 + (𝐴/2)𝜏."%T

[.%O])𝑋_(E + Γ𝜏."%T
[.%O]) 

 
But in any, case A would need to be recomputed for each k or nearly each k 
depending on the step size and the required precision.  This is costly and not 
as dependable as using the MATLAB built in ODE solvers.  The major 
advantage of the MATLAB solvers is that they vary the step size to optimize 
execution given the rate of change of the solution. 
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Modeling plant behavior with Reactor Kinetics and Steam Flow 
 
We will consider the effect of sources (S) to be unimportant for this section. 
 
One line example: Prompt Jump Power -> P = "∑ $!! %!(')

)*+,(')-
 

𝑑𝐶.
𝑑𝑡 =

𝛽.𝑃
Λ −	𝜆.𝐶. =

𝛽.Λ∑ 𝜆// 𝐶/(𝑡)
Λ<𝛽 − 𝜌(𝑡)>

−	𝜆.𝐶. = {@𝛽.𝜆/
/

𝐶/(𝑡) −	𝜆.𝐶.<𝛽 − 𝜌(𝑡)>)}/<𝛽 − 𝜌(𝑡)> 

 
Example Transients Computed with MATLAB based on these equations: 
 

• The	Fuel	Reactivity	power	coefficient	is	–	10	pcm/percent.	
• The	effective	Beta	is	taken	as	simply	the	natural	Beta.	
• The	initial	Tave	is	taken	as	500	degrees	F.	
• The	target	full	power	steady	state	ΔT,	(Th-Tc),	is	set	as	75	degrees	F.		The	

temperatures	are	referenced	to	Tave	so	at	zero	power	Th	=	Tc	=	0;	
• Plots	with	and	without	fuel	temperature	feedback	are	provided.	
• The	water	temperature	coefficient	is	-10	pcm/degree.		Pipe	transport	delay	

time	is	not	considered.	The	hot	and	cold	plenum	𝝉′𝒔	are	25	sec.	
• Ambient	heat	loss	and	pump	heating	are	ignored	 	

𝑋(𝑡) =

'

'

'

𝐶+
𝐶,
𝐶-
𝐶.
𝐶/
𝐶0
𝑇1
𝑇2

'

'

'

 𝑋𝑜(0) =

'

'

'

𝛽+ 𝜆+⁄
𝛽, 𝜆,⁄
𝛽- 𝜆-⁄
𝛽. 𝜆.⁄
𝛽/ 𝜆/⁄
𝛽0 𝜆0⁄
0
0

'

'

'
𝑁3
Λ

 Γ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0
0
0
0
0
0
0
−1⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑆𝐺𝑃𝑜𝑤𝑒𝑟
𝐶4

 

𝐴 = _
1

𝛽 − 𝜌b

c

c

c

𝛽3𝜆3 − 𝜆3(𝛽 − 𝜌) 𝛽3𝜆" 𝛽3𝜆4 𝛽3𝜆5 𝛽3𝜆6 𝛽3𝜆7 0 0
𝛽"𝜆3 𝛽"𝜆" − 𝜆"(𝛽 − 𝜌) 𝛽"𝜆4 𝛽"𝜆5 𝛽"𝜆6 𝛽"𝜆7 0 0
𝛽4𝜆3 𝛽4𝜆" 𝛽4𝜆489!(;8<) 𝛽4𝜆5 𝛽4𝜆6 𝛽4𝜆7 0 0
𝛽5𝜆3 𝛽5𝜆" 𝛽5𝜆4 𝛽5𝜆5 − 𝜆5(𝛽 − 𝜌) 𝛽5𝜆6 𝛽5𝜆7 0 0
𝛽6𝜆3 𝛽6𝜆" 𝛽6𝜆4 𝛽6𝜆5 𝛽6𝜆6 − 𝜆6(𝛽 − 𝜌) 𝛽6𝜆7 0 0
𝛽7𝜆3 𝛽7𝜆" 𝛽7𝜆4 𝛽7𝜆5 𝛽7𝜆6 𝛽7𝜆7 − 𝜆7(𝛽 − 𝜌) 0 0

Λ𝜆3/𝐶, Λ𝜆"/𝐶, Λ𝜆4/𝐶, Λ𝜆5/𝐶, Λ𝜆6/𝐶, Λ𝜆7/𝐶,
−(𝛽 − 𝜌)

𝜏,
(𝛽 − 𝜌)
𝜏,

0 0 0 0 0 0
(𝛽 − 𝜌)
𝜏2

−(𝛽 − 𝜌)
𝜏2

c

c

c

 

 
𝑑𝑋
𝑑𝑡

= 𝐴𝑋 + 	Γ	
Compute		𝜌	and	P	with	the	following	equations:	
	

𝑃(𝑡) =
𝐺(𝑡)

𝛽 − 𝜌(𝑡)
	

𝜌(𝑡) = 𝜌)'($,(𝑡) + 𝛼!(𝑃(𝑡) − 𝑃(0))	 𝑐 = 	
Λ∑ 𝜆𝑖𝑖 𝐶𝑖(𝑡)

𝛼𝑓
	

d𝑇567 = (𝑇567 − 𝑇3) 𝑏 = (−𝛽 + 𝛼@d𝑇𝑎𝑣𝑒+	𝜌)'($, − 	𝛼!𝑃(0))/𝛼!	 	
𝑃(𝑡) = (−𝑏 + l𝑏" − 4𝑐)/2 

𝑃D	is	a	reference	power,	and	𝜌/"#%2 	is	the	reactivity	due	to	effects	other	than	
power.			This	includes	water	temperature	reactivity	𝜌@-"%2 = 	𝛼@(𝑇-1% − 𝑇D),				
𝑇-1% = (𝑇# + 𝑇O)/2	
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Rod Pull at 20% Power yielding 250pcm over 10 seconds 
 
The power rose and then came back to its original value.  Temperature rose while power 
exceeded steam demand.  The final temperature rise is 25°F.  The 20% power ∆T is 15°F. 
Notice the jump in Sur on the rod pull.  The pull ramps from time = 20 sec to time = 30 
sec. The initial jump in SUR is 26.06𝑑𝑝𝑚 − sec F'bD/ED.%O

cdD
G = 1.02𝑑𝑝𝑚. 
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Steam Demand is Raised from 1% to 20% 

 
 
Steam Demand Change 1% to 20% No Fuel Temperature Feedback 
 
This is a ramp increase in steam demand, starting at a low power.    The response 
includes an initial drop in Tc, TAve, and Th - followed by a quick overshoot in power.  
Following that power settles out at the new steam demand.  Look at the SUR 
contributions at the point of power turning.  Note that it is zero at that point. Look at TAve 
at the point of power turning. What does this tell you about the reactivity?  
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Steam Demand Change 1% to 20% with Fuel Temperature Feedback 
 
This is the same transient as the last one but with fuel power reactivity feedback included 
in the model.  The feedback slows down the response.  As you would expect, the TAve 
droops in response to the power increase by 20.0°F.  
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Steam Demand is Raised from 20% to 40% 

 
 
 
Steam Demand Change 20% to 40% with No Fuel Temperature Feedback 
 
 
This is another 20% steam demand change - the results are quite different.  The power 
more closely tracks with steam demand and the overshoot is reduced.  The difference is 
that we ended this 20% power change at a higher power.  In the next section of this paper 
we shall see that at higher powers there is more damping.  
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Steam Demand Change 20% to 40% with Fuel Temperature Feedback 
 
Notice how the feedback has caused a slowing in the response.  The shift in 
TAve is the same as in the previous case.  
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Multiple Ramps in Steam Demand Followed by Shutdown – No Fuel Feedback. 
 
Steam Demand ramps from 10% to 40%, 40% to 70%, and 70% to 100%, followed by a 
Turbine trip. Why did the temperature go up at the end of the transient?  Why did the 
temperatures converge?  Why did we get the sudden drop in SUR at 700 sec? 
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 Multiple Ramps in Steam Demand Followed by Shutdown – With Fuel Feedback. 
 
 
Steam Demand ramps from 10% to 40%, 40% to 70%, and 70% to 100%, followed by a 
Turbine trip. This case includes power reactivity feedback.  Comment on the final 
temperature – is this realistic? What problems do you see? 
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Shutdown From 100% - Without Fuel Feedback. 
 
Notice the apparent steady state SUR after about ten minutes.  Why does the initial SUR 
transient look the way it does?  Why is TAve in the final case higher than the initial 
temperature? Comment on the final temperature – is this realistic?  
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Shutdown From 100% - With Fuel Feedback. 
 
Contrast this with the previous case.  Why does the final TAve wind up as it does? 
Comment on the final temperature – is this realistic? What problems do you see? 
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Power Turning Revisited 
 
Consider a problem the following statement and results: 
 
A	plant	has	a	steady	startup	rate	of	1	dpm	below	the	point	of	adding	
heat.		How	much	reactivity	is	present?		How	much	reactivity	will	remain	
when	power	turns	if	the	heat-up-rate	is	0.092	°F/sec	at	its	peak?		For	
this	case	𝛼@ = −20	𝑝𝑐𝑚/°F	
	
Assume:		𝛽 = 640	𝑝𝑐𝑚	𝑎𝑛𝑑	𝜆I"" =

[.9
2IR
.	Ignore	sources	and	changes	in	

𝜆I"".	
	

𝑆𝑈𝑅 = 26.06	𝑑𝑝𝑚 − 𝑠𝑒𝑐 r
𝜌̇ + 𝜆%!!𝜌
𝛽 − 𝜌 t	

𝜌

= 	

𝑆𝑈𝑅 ∗ 𝛽
(26.06𝑑𝑝𝑚 − 𝑠𝑒𝑐) − 𝜌̇

𝜆%!! +
𝑆𝑈𝑅

(26.06𝑑𝑝𝑚 − 𝑠𝑒𝑐)
	

𝜌̇ = 0, 𝑆𝑈𝑅 = 1	𝑑𝑝𝑚,
𝜆%!! = 0.1/𝑠𝑒𝑐	

	

𝜌 = −𝜌̇/𝜆%!!	

𝜌̇ = 𝛼H ∗ 0.092°
F
sec = 	−1.84	

𝑝𝑐𝑚
𝑠𝑒𝑐 	

SUR	 = 	0.0	dpm	
	

𝜌 = 18.46	𝑝𝑐𝑚	
At	the	point	of	power	
turning.		Initially	the	
reactivity	was	177.48	pcm	to	
get	the	one	DPM	SUR.	

	
	
We	will	now	reconsider	this	problem	using	the	kinetics	solution	applying	the	
prompt	jump	assumption	as	above.		A	rod	pull	is	used	to	establish	a	one	
decade	per	minute	startup.		This	requires	a	reactivity	of	approximately	
0.25𝛽 = 160	𝑝𝑐𝑚	rather	than	approximately	0.28𝛽	required	using	the	𝜆%!! =
D.E
.%O
.		The	actual	𝜆%!!	(prior	to	the	heat	up	beginning)	rises	to	about		0.118	

E
.%O
.		

	
Once	the	power	is	high	enough	to	cause	heating	the	changing	water	
temperature	reduces	the	net	positive	reactivity,	and	it	introduces	a	𝜌̇	which	
also	impacts	the	startup	rate.		In	this	case	the	power	turns	with	a	reactivity	of	
46.9	pcm.		This	is	significantly	higher	than	the	value	found	above.		This	is	
because	the	standard	startup	equation	ignores	the	time	rate	of	change	of	
𝜆%!! .			
	
We	derived	the	following	equation:			
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𝑆𝑈𝑅 = 26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐] �
ṙ+ l%!!r	
(b− r) +

l%!!̇
l%!!

� 

 
The kinetics solution may be used to find this ratio at the point of power turning.  The 

value l-!!
̇

l-!!
= −0.004256	1/sec. Also. at the peak power  𝜆%!! = 0.0929	1/𝑠𝑒𝑐. 

 
We may use the equation for reactivity again as above with the startup rated modified as: 
 
  

𝑆𝑈𝑅f = 𝑆𝑈𝑅 − 26.06	(𝑑𝑝𝑚 − sec)

∗
l%!!̇
l%!!

 𝜌 = 	

𝑆𝑈𝑅′ ∗ 𝛽
(26.06𝑑𝑝𝑚 − 𝑠𝑒𝑐) − 𝜌̇

𝜆%!! +
𝑆𝑈𝑅′

(26.06𝑑𝑝𝑚 − 𝑠𝑒𝑐)

 

 
 
So, at the peak, SUR would become 0.1109 dpm.   Using the equation for the reactivity at 
the peak we obtain 47.04 pcm which is much closer to the kinetics equation result. 
 
The following plots support the power turning discussion. 
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Stability Analysis 
 
The stability of a system may be examined near a fixed point using a 
perturbation theory approach.  It is important to understand that unlike a 
linear system, a nonlinear system may not be globally stable because it is 
stable at one fixed point.  For our case we will consider an initial steady state 
condition as a fixed point examining the behavior of the system about that 
point when we disturb it. This could be something like moving the power off 
its steady state value.  Our systems will be stable, but the resulting 
eigenvalues will vary with initial power.  We can also see how the 
perturbation evolves in time. 
 
Start this analysis using a six delayed group model with a single Tave.  

We are ignoring fuel feedback for this analysis. 
 

𝑃 = 	
Λ∑ 𝜆4𝐶4c

4gE

𝛽 − 𝜌  

𝑑𝑇-1%
𝑑𝑡 = (𝑃hB − 𝑄̇ij)/𝑐 
𝑑𝐶k
𝑑𝑡 = 	

𝛽k
Λ 𝑃 − 𝜆k𝐶k 

 

Now suppose that our steady state has 𝜌[ = 0, �@QpR_\
�/

= 0, �gr_\
�/

= 0 and let 
each variable parameter take the form 𝑃𝑎𝑟𝑎 = 𝑃𝑎𝑟𝑎[ + 𝛿𝑃𝑎𝑟𝑎: 

(PD + 𝛿𝑃)(𝛽 − 𝛼@𝛿𝑇-1%) = 	Λ�𝜆4(𝐶4_D + 𝛿𝐶4

c

4gE

) 

And from the steady state condition this becomes: 

𝛿𝑃𝛽 − 𝑃D𝛼@𝛿𝑇-1% = 	Λ�𝜆4𝛿𝐶4

c

4gE

 

Because: 

PD𝛽 = 	Λ�𝜆4𝐶4_D

c

4gE

 

We have also ignored a product of two perturbations: 𝛿𝑃	𝛿𝑇1TI ≈ 0 
 
Solving this for the perturbation in power we get: 
 

𝛿𝑃 = 1/𝛽[Λ∑ 𝜆4𝛿𝐶4c
4gE + 𝑃D𝛼@𝛿𝑇-1%]  
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Now substitute this into the equations for 𝐶ṁ, 𝑇̇: 

 

𝐶̇k =
𝛽k[∑ 𝜆4𝛿𝐶4c

4gE + 𝑃D𝛼@𝛿𝑇-1%]
𝛽 −	𝜆k𝛿𝐶k  

𝑇̇ =

[Λ∑ 𝜆4𝛿𝐶4c
4gE + 𝑃D𝛼@𝛿𝑇-1%]

𝛽 −	𝑄̇ij
𝐶  

 
While these equations look dreadful, we can put them into a simple matrix form as 
follows: 
 
 
Ψ

=
1
𝛽

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡(𝛽E − 𝛽)𝜆E 𝛽E𝜆F 𝛽E𝜆G 𝛽E𝜆H 𝛽E𝜆I 𝛽E𝜆J

𝛼K𝛽E𝑃0
Λ𝛽

𝛽F𝜆E (𝛽F − 𝛽)𝜆F 𝛽F𝜆G 𝛽F𝜆H 𝛽F𝜆I 𝛽F𝜆J
𝛼K𝛽F𝑃0
Λ𝛽

𝛽G𝜆E 𝛽G𝜆F (𝛽G − 𝛽)𝜆G 𝛽G𝜆H 𝛽G𝜆I 𝛽G𝜆J
𝛼K𝛽G𝑃0
Λ𝛽

𝛽H𝜆E 𝛽H𝜆F 𝛽H𝜆G (𝛽H − 𝛽)𝜆H 𝛽H𝜆I 𝛽H𝜆J
𝛼K𝛽H𝑃0
Λ𝛽

𝛽I𝜆E 𝛽I𝜆F 𝛽I𝜆G 𝛽I𝜆H (𝛽I−𝛽)𝜆I 𝛽I𝜆J
𝛼K𝛽I𝑃0
Λ𝛽

𝛽J𝜆E 𝛽J𝜆F 𝛽J𝜆G 𝛽J𝜆H 𝛽J𝜆I (𝛽J−𝛽)𝜆J
𝛼K𝛽J𝑃0
Λ𝛽

Λ𝜆E
𝐶

Λ𝜆F
𝐶

Λ𝜆G
𝐶

Λ𝜆H
𝐶

Λ𝜆I
𝐶

Λ𝜆J
𝐶

𝛼K𝑃0
C𝛽 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝛿𝐶𝑇(𝑡)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛿𝐶1(𝑡)
𝛿𝐶2(𝑡)
𝛿𝐶3(𝑡)
𝛿𝐶4(𝑡)
𝛿𝐶5(𝑡)
𝛿𝐶6(𝑡)
𝛿𝑇𝑎𝑣𝑒 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

	

𝑅

=	

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0
0
0
0
0
0

−	𝑄̇QR/𝑐⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐶𝑇S

=
𝑃0
Λ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛽E/𝜆E
𝛽F/𝜆F
𝛽G/𝜆G
𝛽H/𝜆H
𝛽I/𝜆I
𝛽J/𝜆J
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

	

 
 
And 

𝑑(𝛿𝐶𝑇)
𝑑𝑡 = Ψ	𝛿𝐶𝑇 + 𝑅 

 
Is a linearized equation for a small perturbation around our fixed point. The matrix 𝜓 is 
constant for a fixed point P0 so we may use linear methods to study its eigenvalues and 
find the linear equation solution to observe the progress of the Perturbation in time.    
 

𝛿𝐶𝑇(𝑡) = 𝑒Ψt𝛿𝐶𝑇(0)+ Ψ−1(𝑒Ψt−𝐼)𝑅 
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The system will be stable where the eigenvalues have no roots in the right 
half of the complex plane.  The system oscillation will also depend on these 
roots.  We will now go on to study the behavior of these roots as well as the 
implications of the various models: 

• One	Delayed	Group	
• Six	Delayed	Neutron	Groups	
• Full	Reactor	kinetics	(See	Note	1.)	

 
 
One Delayed Neutron Group  
 
Keep in mind this is a poor approximation group because it assumes a 
constant effective precursor decay constant.  We do it only to simplify the 
computation as an example. 
 
If we consider a one delayed group version of this problem, we obtain a two-
by-two matrix as follows:  

 

Ψ=
⎣
⎢
⎢
⎡
	
0 𝛼𝑤𝑃0/Λ

Λ𝜆𝑒𝑓𝑓
𝑐𝛽

𝛼𝑤𝑃0
𝑐𝛽 ⎦

⎥
⎥
⎤
	 𝑅 = 	 � 0

−𝑄k�/𝑐
� 

𝐶𝑇[ =
𝑃
Λ
 
𝛽
𝜆I""
0
¡	

	
 

Upper left element is zero because the expression msfs
m
−	𝜆9 = 0.  We 

replaced 𝛽9	with 𝛽	and no other 𝛽S exist. 
 
Now compare the stability matrix with the model used for plotting reactor 
power and steam demand transients.   
 
The matrix above has the following eigenvalues: 
 

𝑒∓	 =	
𝛼!𝑃[
2𝑐𝛽

�1 ∓ (1 +
4𝜆I""𝑐𝛽
𝛼!𝑃[

)9/+� 
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Any value of 𝛼! > 0 will give an unstable root.  Further if 𝛼! < 0 the 
system will have complex roots only if ¤`fR11Rm

lPn\
¤ > 1 . In that case the roots 

will appear as a conjugate pair.  The complex roots imply a damped 
oscillation.   
 
Suppose we establish initial conditions for 0.99% power but force a 1% 
steam flow. The system will allow power to rise to a steady state value of 
1% but with extensive oscillations.   
 

Single Delayed Group Model Perturbation  
1% Steam Flow 

 

 
 
The ringing in these solutions is due to a small damping predicted by the 
single delayed group model.  The real part of the two eigenvalues is -0 
.00023 1/sec.  So, the damping is of the form e(-0.00023t) at 1% power.  This 
predicts a small power oscillation, which would continue for over four 
hours.  This model is incorrect, power does not oscillate for this extend time. 

This largely due to ignoring ḟR11
fR11

 as we have discussed. 
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Six Delayed Neutron Groups 
 
The six-group prompt jump assumption model is damped in about a third of 
the time of the one delayed group case.  
 

Six Delayed Group Model Perturbation at 1% Steam Flow (Kinetics Solution) 
 

 
  



	 48	

The six-group matrix will have seven eigenvalues and for all power levels 
one pair of these eigenvalues will be complex.  This differs from the one 
delayed group case. 
 
 

 
 
These plots tell us that at high power we may still see some overshoot but 
that the damping will be strong at those powers.   
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Six Delayed Group Solution and Stability Matrix Perturbation  
1% Steam Flow 

 
The first plot is a time domain plot for the transient using the solvers used 
previously in this paper.  The second plot time domain solution of the 
stability matrix method of the system for the CT(t) vector of precursor 
concentrations. The subsequently power is computed from that vector. 
 

 
 
It should be noted that the perturbation settles out to zero similar to the 
actual power transient.  This plot shows the perturbation in power settling 
out to zero, leaving the power at its steady state value.  The key here is that 
the frequency and duration of the transient is a close match to the full six-
group solution. 
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This is the same case repeated for 100% steam flow. 

 
Six Delayed Group Solution and Stability Matrix Perturbation  

100% Steam Flow 
 
 

 
 
 
 
 
This is the full solution for the same 1% perturbation at 100% power.  The 
matrix method (second plot) somewhat under predicts the overshoot and 
crosses zero later than the full solution shown here in the first plot.  It is 
interesting to note that in the case of the 1% Steam Flow shown earlier, the 
agreement between the stability method and the full solution were nearly 
exact. 
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By contrast the single-delayed group method significantly over predicts the 
length of time for this transient to die out.  The oscillation in that case 
continues to be observable for at least 150 sec as compared to about 70 sec 
in the six-delayed group case.  The Stability Matrix approach for this case 
also exhibits the under predicted overshoot and later zero crossing as we saw 
for the six-group case. 
 

One Delayed Group Model Perturbation at 100% Steam Flow 
 

 
 
Conclusion 
 
Use of the six-group Stability matrix may be helpful to obtain confidence in 
a model based on six delayed neutron groups and a single system Tave. The 
one delayed group stability matrix is not recommended for this purpose. 
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Notes 
 

1. No	Prompt	Jump	Assumption.	
	

A full kinetics version of the stability matrix has the following form, Note we use S 
rather than Psi here.  This S should not be confused with the  
 
 
 

Ψ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−
𝛽
Λ
+
𝛼M𝑃D
Λ

𝜆E 𝜆' 𝜆n 𝜆d 𝜆b 𝜆c
𝛼@𝑃D
Λ

𝛽E
Λ

−𝜆E 0 0 0 0 0 0

𝛽'
Λ 0 −𝜆' 0 0 0 0 0

𝛽n
Λ 0 0 −𝜆n 0 0 0 0

𝛽d
Λ 0 0 0 −𝜆d 0 0 0

𝛽b
Λ 0 0 0 0 −𝜆b 0 0

𝛽c
Λ

0 0 0 0 0 −𝜆c 0

1/𝐶 0 0 0 0 0 0 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

𝐶𝑇D =
𝑃D
Λ 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
Λ

𝛽E/𝜆E
𝛽'/𝜆'
𝛽n/𝜆n
𝛽d/𝜆d
𝛽b/𝜆b
𝛽c/𝜆c
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

 
 
 
This is significantly better at 100% and slightly better at 1% power as compared to the six-
group prompt jump version of the solution. This version also allows a fuel reactivity 
correction.  The plot below has this correction set to zero to allow comparison with the 
previous plots.  The error is computed as the absolute value of the difference divided by 
the full kinetics solution times 100%. 
 

Full Kinetics Model Perturbation at 100% and 1%  Steam Flow 
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2.  The analog one delayed group stability matrix is a three-dimensional matrix with a CT0 
vector that contains variation in power, precursor concentration, and temperature.  This 
system is as follows: 
 

Ψ =

⎣
⎢
⎢
⎢
⎡−
𝛽
Λ +

𝛼M𝑃D
Λ 𝜆%!!

𝛼@𝑃D
Λ

𝛽
Λ −𝜆%!! 0

1/𝐶 0 0 ⎦
⎥
⎥
⎥
⎤

 

 

𝐶𝑇D =
𝑃D
Λ ¡

Λ
𝛽/𝜆%!!
0

¢ 

 

 
This version will be consistent with the one delayed group reactor kinetics equation.  The 
excessive damping time will remain as discussed above.  That is an inherent problem with 
the one delayed group. 
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Note 3. Transport Delay 
 
Real reactor plants pump fluid between the steam generator and reactor and the time to 
make a single loop will vary among the plants.  Times may be as small as a few seconds 
in a small reactor system to a large fraction of a minute for reactors with low or no 
pumping power.  For this discussion we will consider the impact on the hot and cold 
cycle temperatures given reactor and generator time constants. The delay times are half of 
the loop transport time.  So 𝜏oh%-O"/2 = 𝜏oj%5%2-"/2 = 𝜏o =

*//T	H2-5.T/2"	H48%
'

.  We will 
not consider the impact on reactor kinetics here.  We focus only on the fluid system 
transient as discussed in Section 2 of this paper. 
 
The differential equations become the following. 
 

𝑑𝑇0
𝑑𝑡

= 	
𝑇R(𝑡 − 𝜏𝑑) − 𝑇0(𝑡)

𝜏6
+	
𝑃6
𝐶6

 

 
𝑑𝑇R
𝑑𝑡

= 	
𝑇0(𝑡 − 𝜏𝑑) − 𝑇R

𝜏2
−	
𝑄2
𝐶2

̇
 

 
 
This system of equations does not allow normal solution because of the time 
delays.  We will study this system using Laplace transforms but first, 
MATLAB does provide a means to directly integrate the equations with the 
time delays.  Again using  𝜏6 = 𝜏2 = 25	𝑠𝑒𝑐. We get the following on a step 
change in both reactor and generator power from zero to one hundred 
percent. 

 
 
 
This set of graphs demonstrate that the impact of high loop transport times is 
to cause the system to have significant oscillation in its temperatures.   At 
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the same time, small delays cause the damping to be more rapid, note the 
case for a ten second loop transport time.  However, beyond that value we 
see overshoot of increasing significance and a slowly damped oscillation. 
 
The key to understanding this phenomenon is to consider this problem in the 
Laplace domain.  We need a new fact about time delays and the Laplace 
transforms. 
 
Assuming that 𝜏� is a constant, and that the transform of g(t) is G(s). then 
the transform g(t-𝜏�) is 𝑒,pt2G(s).   This may be demonstrated by going 
back and reviewing the integral definition of the transform and by making a 
time substitution in the integral. 
 
With this, the Laplace transform of the differential equations become the 
following: 
 

𝑠𝑇0(𝑠) = 	
𝑒,pt2𝑇R(𝑠) − 𝑇0(𝑠)

𝜏6
+	

𝑃6
𝑠𝐶6

 

 

𝑠𝑇R(𝑠) = 	
𝑒,pt2𝑇0(𝑠) − 𝑇R(𝑠)

𝜏2
−	

𝑄2
𝑠𝐶2

̇
 

 
 

Put the temperature terms in vector form, 𝑇 = 	 �
𝑇ℎ(𝑠)
𝑇𝑐(𝑠)

� and rewrite our equations in the 

matrix form.  Multiply by the time constants and collect all temperature terms on the left-
hand side. 
 

�1 + 𝜏𝑟𝑠 −𝑒−𝜏𝑑𝑠
−𝑒−𝜏𝑑𝑠 1 + 𝜏𝑠𝑠

� 𝑇 = 	
1
𝑠
⎣
⎢
⎢
⎢
⎡ 𝜏𝑟𝑃𝑟
𝐶𝑟

−𝜏𝑠𝑄𝑠
𝐶𝑠

̇

⎦
⎥
⎥
⎥
⎤
 

Given this we can write a transfer function as follows: 
 

𝑇 = 	
�1 + 𝜏𝑠𝑠 𝑒−𝜏𝑑𝑠
𝑒−𝜏𝑑𝑠 1 + 𝜏𝑟𝑠

�

(1 + 𝜏𝑟𝑠)(1 + 𝜏𝑠𝑠) − 𝑒−2𝜏𝑑𝑠
		
1
𝑠
⎣
⎢
⎢
⎢
⎡ 𝜏𝑟𝑃𝑟
𝐶𝑟

−𝜏𝑠𝑄𝑠
𝐶𝑠

̇

⎦
⎥
⎥
⎥
⎤
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We have used the fact that the inverse of ¥𝑎 𝑏
𝑐 𝑑

¦ 	𝑖𝑠	
� � ,�
,R 1 �

1�,R�
 and we have 

used the fact that squaring the exponential adds a two to the exponent. 
 
So, our transfer function is: 
 

H = 
" #$%C& '(DEFC

'(DEFC #$%G&
)

(#$%G&)(#$%C&)'(DHEFC
 

 
 
And 

𝑇 = 𝐻			
1
𝑠
⎣
⎢
⎢
⎢
⎡
𝜏2𝑃2
𝐶2

−𝜏.	𝑄.
𝐶.

̇
⎦
⎥
⎥
⎥
⎤
 

 
Studying the behavior of our system now starts by studying the roots of the 
denominator of H.  Complex roots of this denominator will result in 
oscillation. 
 
To begin, this denominator continues to provide a singularity at 𝑠 = 0.0 for 
all values of the delay.  This is because 𝑒[ is one so the denominator 
becomes (𝜏6+𝜏2)𝑠 + 𝜏6𝜏2𝑠+ and this will be zero if s is zero. The other root 
happens when 𝑠 = 	−(𝜏6+𝜏2)/	𝜏6𝜏2 =	−1/𝜏I"".  
 
Using the values 𝜏6 = 𝜏2 = 25	𝑠𝑒𝑐 we can numerically find roots that are 
real below a “Departure Value” at a delay time, 𝜏� = 6.9615	sec.  Below 
this Departure Value, the existence of the exponential contributes an 
additional real root.  Plots of the denominator look as follows:  
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For all small positive values of 𝜏� the graphs have the same shape, crossing 
zero at two negative values of s leading to two exponential decay terms.  
These are the real roots.  This is true until 𝜏� just is 𝜏� = 6.9615	sec.  At 
this point the hump no longer reaches the zero axis.  From that point on the 
roots are complex leading to oscillation.   
 
Here is a detailed plot of the real roots for the time delay below the 
Departure Point. 
 

 
 
The root that is identified as “Root 2” will provide a term which will decay 
rapidly compared to the decay or the “Root 1” term.  We expect the resulting 
plot to have a character driven by the later. 
 
Once we reach the Departure Point, we will have complex roots leading to 
damped oscillation.  The roots will have complex roots that appear in 
conjugate pairs. 
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Note that as the time delay increases beyond the Departure Point the 
magnitude of the real part of these eigenvalues becomes smaller.  This 
means that the oscillations become less damped as the time delay is 
increased. 
 
To understand the statement concerning conjugate pairs we will decompose 
the denominator into real and imaginary parts, both of which must be zero at 
a root. 
 

(1 + 𝜏6𝑠)(1 + 𝜏2𝑠) − 𝑒,+pt2 
 
Substitute 𝑠 = 	𝜎 + 𝑗𝜔  
 

(1 + 𝜏6(𝜎 + 𝑗𝜔	))(1 + 𝜏2(𝜎 + 𝑗𝜔	)) − 𝑒,+pt(�j��	) 
 
Multiply the left-hand side and write 𝑒,+pt(�j��	) as  
 

𝑒,+pt�(cos(2𝜏�𝜔) + 𝑗	𝑠𝑖𝑛(2𝜏�𝜔) 
 

This results in the following two equations: 
 
Real Part 	1 + 𝜎(𝜏6 + 𝜏2) − 𝜏6𝜏2(𝜎+ − 𝜔+) = 	 𝑒,+pt� cos(2𝜏�𝜔) 
Imaginary Part 𝜔(𝜏6 + 𝜏2) = 𝑒,+pt�	𝑠𝑖𝑛(2𝜏�𝜔) 

 
Examining the equations we see that if 𝜎 + 𝑗𝜔 is a solution then, 𝜎 − 𝑗𝜔 
will also be a solution. We use the fact that the cosine function is even, and 
the sine function is odd. 
 
We have focused this discussion only on the zero and other roots with the 
smallest magnitude real parts.  These will dominate the solution.  The two 
equations shown above will have a vast collection of possible solutions of 
the form 𝜎 + 𝑗𝜔 due to the transcendental character of the sine and cosine 
functions.  But, for reasonable values of the time delay, these roots will have 
a significantly larger damping constant and result in rapidly vanishing 
portions of the time domain solution. 
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Return to the time domain plot that we saw at the beginning of this 
discussion. 
 

 
 
 

If we look at the case with a 40 second delay and measure the distance 
between the last two peaks in the red curve, we have roughly a 120 second 
period.  The radial frequency at this point using our Imaginary Part above is 
roughly 𝜔 =0.0084 1/sec.  The period would be +b

�
 and this is 119.7 

seconds.  This demonstrates the relationship between the Laplace and time 
domain approaches. 
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Note 4. A Four Group Criticality Calculation 

	
We	solved	a	two-group	example	criticality	calculation	in	this	paper.		It	would	
be	instructive	to	do	a	similar	calculation	assuming	a	four-energy	group	
system.		Real	criticality	calculations	use	far	more	than	four	energy	groups,	
but	the	methods	used	in	those	cases	are	like	what	we	will	do	here.		We	will	
continue	to	think	of	only	a	homogeneous	one	region	reactor	for	this	case.		We	
will	also	approximate	the	flux	as	being	zero	at	the	boundaries	of	the	cube.	
	
Here	is	some	typical	data	for	four	energy	ranges:	
	

 Group 1 Group 2 Group 3 Group 4 
Energy 
Ranges 

E > 0.821Mev 5.5 Kev<E<0.821Mev 0.625ev<E< 5.5Kev E < 0.625ev 

D 1.40 cm 0.9 cm 0.55 cm 0.30 cm 
χ 0.98 0.02 0 0 
𝜈ΣA 8.00x10-3 cm-1 8.42x10-4 cm-1 1.214 x10-2 cm-1 1.32 x10-1 cm-1 
Σ? 3.714x10-3 cm-

1 
2.170x10-3 cm-1 2.369 x10-2 cm- 8.379 x10-2 cm-1 

ΣU,WX> 0.0243 cm-1 0.0628 cm-1 0.570 cm-1 0 cm-1 
 
In-Scattering Matrix  

Σ.
→6 = £

0 0 0 0
0.0243 0 0 0
0 0.0628 0 0
0 0 0.0570 1.3588

¥ cm−1 

 
Note that the sum of the columns in this matrix with the diagonal elements 
removed is the scattering removal cross section for the associated group.  We are 
using a simplified case where scattering moves us only one group down and self-
scattering is ignored. 
 
These values have been manufactured to be reasonable but they do not represent 
any real reactor and should not be used beyond the context of this example. 
 

We can now write the diffusion equation for the multi group system as follows: 
 
𝐴	

= 	

⎣
⎢
⎢
⎢
⎢
⎡Σ?

E + ΣU,WX>E −ΣU
→[

E,F −ΣU
→[

E,G −ΣU
→[

E,H

−ΣU
→[

F,E Σ?F + ΣU,WX>F −ΣU
→[

F,G −ΣU
→[

F,H

−ΣU
→[

G,F −ΣU
→[

G,F Σ?G + ΣU,WX>G −ΣU
→[

G,H

−ΣU
→[

H,E −ΣU
→[

H,F −ΣU
→[

H,G Σ?H + ΣU,WX>H⎦
⎥
⎥
⎥
⎥
⎤

 

 

𝐷	

= 	 ¡
𝐷E 0 0 0
0 𝐷F 0 0
0 0 𝐷G 0
0 0 0 𝐷H

¢ 

χ

=

⎣
⎢
⎢
⎡χ
E

χ'

χn

χd⎦
⎥
⎥
⎤
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𝐷dBd	𝐵' £

𝜑E
𝜑'
𝜑n
𝜑d

¥ = 	−𝐴dBd £

𝜑E
𝜑'
𝜑n
𝜑d

¥ + χcBE	(𝜈Σ!c,E)H £

𝜑E
𝜑'
𝜑n
𝜑d

¥ = (χ	(𝜈Σ!)H − 𝐴) £

𝜑E
𝜑'
𝜑n
𝜑d

¥ 

 
Note that the expression χcBE	(𝜈Σ!c,E)H creates a matrix, and the net result of its 
operation on the four-element flux is the scalar dot product of 𝜈Σ! times the flux vector. 
This scalar is then multiplied by the the vector χ.  
 
The expression that we have here is a generalized eigen value problem: 
 

𝜆𝑁𝑣	 = 	𝑀𝑣 
 
Here 𝜆′𝑠 are the eigenvalues, (in our case 𝐵') and eigenvectors are 𝑣′𝑠 are normalized 
flux vectors.  For our case we will take only the smallest eigenvalue, as the buckling, and 
its associated eigenvector, as the flux vector.  The buckling will be the smallest real 
positive eigenvalue for this equation.  The values in the flux vector will give the relative 
amplitudes of the fluxes in each group.  The overall values of these fluxes will then be 
determined by the power level.  With only the thermal group being assumed to create 
fission here, the power will set the thermal group flux. 
 
Many program environments can solve this directly.  For example in MATLAB we can 
write [V,D] = eig(M,N) where V is a matrix of the right eigenvectors, and the matrix D 
has a diagonal consisting of  the eigenvalues.  We may also write this as [V,D] 
= eig(N\M).   
 
The vector v (that corresponds with our buckling) when normalized will be the relative 
amplitudes of the group fluxes.   
 
The side of the cube will then be 𝐿	 = √3		𝜋/√𝐵'.  This the case because the buckling for 
a rectangular solid is: 

𝐵' = (
𝜋
𝐿B
)' + (

𝜋
𝐿3
)' + (

𝜋
𝐿C
)' 

This is true because we have the following: 
 

𝜕'𝐹(𝑥, 𝑦, 𝑧)
𝜕𝑥' +

𝜕'𝐹(𝑥, 𝑦, 𝑧)
𝜕𝑦' +

𝜕'𝐹(𝑥, 𝑦, 𝑧)
𝜕𝑧' 	= 	−𝐵'𝐹(𝑥, 𝑦, 𝑧) 

This will be true only if 𝐵' = �s8
*t\
�
'
+ �s5

*t]
�
'
+ �sT

*t^
�
'
  For the lowest mode we {m, n, p} 

all equal to one.  For a cube the sides will all have equal length. 
 
When we make this calculation, we get L = 77 cm.  This number would be off because 
we are doing a four-group solution which fails to do justice to the problem, particularly in 
the resonance absorption region, we also have assumed that the flux goes to zero at the 
edges of the cube.  This would be closer to correct a few centimeters outside the cube.  

https://www.mathworks.com/help/releases/R2025a/matlab/ref/eig.html?searchHighlight=eig&s_tid=doc_srchtitle#btgapg5-1-V
https://www.mathworks.com/help/releases/R2025a/matlab/ref/eig.html?searchHighlight=eig&s_tid=doc_srchtitle#btgapg5-1-D
https://www.mathworks.com/help/releases/R2025a/matlab/ref/eig.html?searchHighlight=eig&s_tid=doc_srchtitle#btgapg5-1-A
https://www.mathworks.com/help/releases/R2025a/matlab/ref/eig.html?searchHighlight=eig&s_tid=doc_srchtitle#btgapg5-1-B
https://www.mathworks.com/help/releases/R2025a/matlab/ref/eig.html?searchHighlight=eig&s_tid=doc_srchtitle#btgapg5-1-V
https://www.mathworks.com/help/releases/R2025a/matlab/ref/eig.html?searchHighlight=eig&s_tid=doc_srchtitle#btgapg5-1-D
https://www.mathworks.com/help/releases/R2025a/matlab/ref/eig.html?searchHighlight=eig&s_tid=doc_srchtitle#btgapg5-1-A
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% ComputeCriticalCubeFourGroup() 
% William Locke 
% October 4, 2025 
% 
% Make a four-energy group estimation of the size 
% of a homogeneous cubic reactor with typical four 
% group parameters that are only examples of values. 
% They do not represent any real reactor. 
 
 
function ComputeCriticalCubeFourGroup() 
    D      = [1.40; 0.90; 0.55; 0.30];                  
    Chi    = [0.98; 0.02; 0.00; 0.00]; 
    nuSigmaf   = [8.00e-3; 8.42e-4; 1.214e-2; 1.328e-1]; 
    Sigma_a= [3.714e-3; 2.170e-3; 2.369e-2; 8.379e-2];  
    % Scatter into groups, self-scattering is removed. 
    InScattering = [ 0, 0,      0,      0; 
               0.0243, 0, 0,      0; 
               0,      0.0628, 0, 0; 
               0,      0,      0.0570, 0]; 
     
    % This line sums the off-diagonal elements 
    % one column at a time.  This gives the 
    % scattering removal cross section for each  
    % group. 
    SigmaScatteringRemoval = sum(InScattering, 1).';    
    Sigma_r = Sigma_a+SigmaScatteringRemoval; 
    A = diag(Sigma_r) - InScattering ; 
     
    % ---- Generalized eigen build ---- 
    M = Chi*(nuSigmaf.') -A;      
    N = diag(D);               
    B2Set = eig(N\M);    
    % Select the real part of values  
    % that are positive and nearly real. 
    B2Set = B2Set(real(B2Set)>0); 
    B2Set = B2Set(abs(imag(B2Set)) < 1.0e-10); 
    B2Set = real(B2Set); 
    % Now pick the minimum value for the remaining group. 
    B2 = min(B2Set); 
    L = pi*sqrt(3)/sqrt(B2); 
    fprintf('Critical side L = %.3f cm\n', L); 
end 
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Note 5. Reactivity 
 
There are two views of the concept of reactivity, one which evaluates 𝑘%!!and defines 
reactivity as 𝜌 = 1 − 1/𝑘%!!.  The other view is formed by the first order perturbation 
theory method used in deriving the reactor kinetics equation.  For reactivities in normal 
operational ranges, these two methods produce equivalent results.  For example, the 
tables below perturb the fission neutrons, the absorption cross section and the side length 
individually to measure the two reactivity computations. 
 
 𝑓	𝑤𝑖𝑡ℎ	𝑘D = 1 1.0005𝜐Σ! 1.0005Σ- 1.0005𝐿 
K Method +33.73 pcm 

 
-33.15 pcm 
 

+28.07 pcm 
 

Perturbation 
Method 

33.75 pcm 
 

-33.16 pcm  
 

28.09 pcm  
 

 
𝑓	𝑤𝑖𝑡ℎ	𝑘D = 1 1.01𝜐Σ! 1.01Σ- 1.01𝐿 

K Method +670.39 pcm 
 

-661.03 pcm 
 

+552.89 pcm  
 

Perturbation 
Method 

674.91 pcm 
  
 

-663.14 pcm  
 

561.86 pcm  
 

 
𝑓	𝑤𝑖𝑡ℎ	𝑘D = 1 0.95𝜐Σ! 0.95Σ- 0.95𝐿 

K Method -3492.41 pcm 
  

+3369.50 pcm 
 

-3054.37 pcm 
 

Perturbation 
Method 

-3374.56 pcm 
  
 

3315.69 pcm 
 

-2809.28 pcm  
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K Method 

D = Diffusion coefficients (diagonal matrix) 
𝐵6' = geometric buckling for homogeneous shape 
𝑅	 = 	𝑑𝑖𝑎𝑔(Σ- + Σ./$") − 𝑆u5(iO-""%2456

v!!	w4-6/5-&  
A = Leakage + Absorption + Out-scatter 
𝐴	 = 	𝐷𝐵6' + 𝑅 
𝐹	 = 	𝜒Y𝜈Σ!Z

H 
𝐹𝜑 = 𝑘𝐴𝜑	 ↔ 𝐴(E𝐹𝜑 = 	𝑘%!!𝜑 

 
Or  
 
Perturbation method 
 

𝛿𝑘/𝑘	 = 	
(𝜑x)H(𝛿𝐹 − 𝑘D𝛿𝐴)𝜑

(𝜑x)H𝐹𝜑  

 
The expression y_

_
is very nearly the reactivity when k is nearly 1.  𝜌 = 1 − 1/𝑘%!! so  

𝛿𝜌 = 𝛿𝑘/𝑘' ≈ 𝛿𝑘/𝑘 
 
Review of the derivation of the first order perturbation equation  
 

1 𝐹𝜑 = 𝑘𝐴𝜑 
2 𝐹H𝜑x = 𝑘𝐴H𝜑x 

3 𝐹 → 𝐹 + 𝛿𝐹, 𝐴 → 𝐴 + 𝛿𝐴,		 
4 𝜑 → 	𝜑 + 𝛿	𝜑, 𝑘 → 	𝑘 + 𝛿	𝑘 
5 (𝐹 + 𝛿𝐹)(𝜑 + 𝛿	𝜑) = (𝑘 + 𝛿	𝑘)(𝐴 + 𝛿𝐴)(𝜑 + 𝛿	𝜑) 
6 𝐹𝛿	𝜑 + 	𝛿𝐹𝜑 = 𝑘𝐴𝛿𝜑 + 𝑘𝛿𝐴	𝜑 + 	𝛿	𝑘𝐴	𝜑 
7 (𝜑x)H𝐹 = 𝑘(𝜑x)H𝐴	 → (𝜑x)H(𝐹 − 𝑘𝐴) = 0 
8 𝛿	𝑘 = 	 (𝜑x)H(𝛿𝐹 − 𝑘𝛿𝐴)𝜑/((𝜑x)H𝐴𝜑) 
9 𝐴𝜑 = 1/𝑘	𝐹	𝜑 
10 𝛿𝑘

𝑘 =
(𝜑x)H(𝛿𝐹 − 𝑘𝛿𝐴)𝜑

((𝜑x)H𝐹𝜑)  

 
So, this resulted in our equation for reactivity in terms of a fractional differential in k.  It 
is this value that approximates 𝜌 = 1 − E

_-!!
 as we have shown above. 
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Note 6.  Derivation of the Loop Temperature Related Equations 
 
Derivation of the expression for 𝑒U" 
 

𝐴 = �−1/𝜏2 1/𝜏2
1/𝜏. −1/𝜏.

� 

 
 𝐴 = �−1/𝜏2 1/𝜏2

1/𝜏. −1/𝜏.
� 

Let 𝜈 = 𝜏𝑠
𝜏𝑟
	𝑎𝑛𝑑	𝜏𝑒𝑓𝑓 = 	

𝜏𝑟𝜏𝑠
𝜏𝑟+𝜏𝑠

  
Then A, its 
eigenvalues 
and its 
modal 
matrix are: 

𝐴 = 	
1

𝜏%!!(𝜈 + 1)
�−𝜈 𝜈
1 −1� 

{0, -1/𝜏%!!} 𝑀 = ¥1 −𝜈
1 1 ¦ 

 

𝑀,9 =
¥ 1 𝜈
−1 1¦

𝜈 + 1
 

 
 𝑒U" = 𝑀 �1 0

0 𝑒("/W-!!�𝑀
−1

= 1
(𝜈 + 1) �

𝜈𝑒("/W-!! + 1 𝜈 − 𝜈𝑒("/W-!!
1− 𝑒("/W-!! 𝜈 + 𝑒("/W-!!

� 

 𝑒U" =
1

(𝜈 + 1) F�
1 𝜈
1 𝜈�+ 𝑒("/W-!! � 𝜈 −𝜈

−1 1 �G 

Add and 
subtract 
� 𝜇 −𝜇
−1 1 �  

𝑒U" =
1

(𝜇 + 1) F�
1 𝜈
1 𝜈�+ � 𝜈 −𝜈

−1 1 �− (1 − 𝑒("/W-!!) � 𝜈 −𝜈
−1 1 �G 

 
𝑒U" = �1 0

0 1�−
(1 − 𝑒

( "
W-!!)

(𝜈 + 1) � 𝜈 −𝜈
−1 1 � = 𝐼 + 𝜏%!!(1 − 𝑒("/W-!!)𝐴 
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Derivation of the Loop Temperature Equation 𝑒q/𝐾 
 
We have the following equations: 
 

𝑇 = 	 �𝑇#𝑇O
� 𝐴 = �−1/𝜏2 1/𝜏2

1/𝜏. −1/𝜏.
� 

 𝐵 = 	

⎣
⎢
⎢
⎢
⎡
𝑃2
𝐶2

−	
𝑄.
𝐶.

̇
⎦
⎥
⎥
⎥
⎤
 

𝐼 = 	 �1 0
0 1� 

𝑑𝑇
𝑑𝑡 = 𝐴𝑇 + 𝐵 𝑇(𝑡) = 	 𝑒U"𝑇D + 𝑒U"� 𝑒(U"f ∗ 𝐵	𝑑𝑡′

"

D
 

 
The matrix A has eigenvalues {0, E

W-!!
} and a modal matrix using the modal matrix and 

eigenvalues of A matrix we find the following: 
 

𝑒U" = 𝐼 + 𝜏%!!(1 − 𝑒
"

W-!!)𝐴 𝐾 = � 𝑒(U"f ∗ 𝐵	𝑑𝑡′
"

D
 

𝐾 = 𝑡𝜏%!!𝑈𝐵 − 𝜏%!!' �𝑒
#

_-!! − 1�𝐴𝐵  𝑈 =
𝐼

𝜏%!!
+ 𝐴 

 
The following identities hold: 
 
(I+𝜏%!!𝐴)𝐴 = 0 𝑈𝐵 = 0		𝑖𝑓 	𝑃2 = 𝑄̇.	 

 

𝑒U"𝐾 =	 𝑡𝜏%!!𝑒U"𝑈𝐵 − [𝐼 + 𝜏%!!(1 − 𝑒
("
W-!!)𝐴]𝜏%!!' �𝑒

"
W-!! − 1�𝐴𝐵 

𝑒U"𝐾 =	 𝑡𝜏%!!𝑒U"𝑈𝐵 − [Y𝐼 + 𝜏%!!𝐴Z𝐴 − 𝜏%!!𝑒
("
W-!!)𝐴'𝐵]𝜏%!!' �𝑒

"
W-!! − 1� 

𝑒U"𝐾 =	 𝑡𝜏%!!𝑒U"𝑈𝐵 − (−𝜏%!!𝑒
("
W-!!)𝐴'𝐵]𝜏%!!' �𝑒

"
W-!! − 1� 

(I+𝜏%!!𝐴)𝐴 = 0 

𝑒U"𝐾 =	 𝑡𝜏%!!𝑒U"𝑈𝐵 − 𝜏%!!' �1 − 𝑒
("
W-!!�𝐴𝐵 

𝜏%!!𝐴' = −𝐴 

So 𝑇(𝑡) = 𝑒U" »�𝑇#𝑇O
� + 	𝑡𝜏%!!𝑈𝐵¼ - 𝜏%!!' �1 − 𝑒

`#
_-!!�𝐴𝐵 

 
 


