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1. Reactivity Effects

The reactivity that appears in the kinetics equations is computed from the
integration over the reactor volume of the weighted adjoint flux times the
result of operating on the initial flux vector by the perturbed differential
equation operator. The vectors here are the multigroup energy partitioned
adjoint flux and the flux itself. The denominator represents the net
production of neutrons per second. This results in a fractional net
production divided by the total production.
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As discussed in the first paper, we will model the reactivity in
terms of six contributing factors associated with the overall
neutron life cycle.



Thinking About Reactivity Changes - The Six Factor Formular
Keff = epPsPufn

Fast Non-
Leakage
Resonance
Fast Fission Escape

Reproduction Thermal Utilization Thermal Non-
Leakage

Fast Fission € We will treat the fast fission factor as
Factor constant and nearly one. This may not
be true in all reactor types.
Resonance P (Tryer) As the temperature rises the resonance
Escape escape goes down. This is related to a
Probability change in the probability that a
neutron will be absorbed in the
resonances.
2
FE:;E‘ (g; P = TZJEL]% ~ ¢ BfL} Bf == jf Buckling (related to the
Factor degree of curvature of the fast flux)
L/% Is the square of the fast diffusion
length.
L? a5t = Drast /It (Also known as
the slowing down length.)
2
Thirégigl;on' Py, = HB%LZ BZ, = \;i‘hBuckling (Curvature of
th™th the thermal flux)
Factor ~ ,—B L%
=e T L%, Is the square of the thermal
diffusion length.
Lip = Den /28
Thermal f The macroscopic cross section is
Utilization E{L;ttlel ¥ = oN(Temperature) X ppaterial
Factor = quell + 2:Everything Else
tota a
Reproduction vy fuel This will change as the composition of
Factor n= ]{u = the fuel shifts from U? to Pu?%.
D Neutrons created per thermal fuel
absorption.



Reactivity in terms of “Worths”

When a sequence of small changes is made to the reactor, the perturbations
are considered small enough that we may think of them as differentials. The
total reactivity is the sum of these differentials.

PNet = PTemperature + Prods T Proison + Pruet Burn +

0PNet 0PNet 0pNet )
PNet = 6—Te *adT + aHe * dH + m * dPoison
Pnet
__Net . dP
dPower *arower

Each of the partial derivatives here is given a name in the operational
parlance of reactors:

apNet Ay
oT Water temperature coefficient
water
0pNet Differential Rod Worth DRW
0H
0pNet Differential Poison Worth
dPoison
dpNet as
dPower Fuel temperature coefficient

The last of these is also often expressed as:

dT
anuel fuel

This later form is useful in the design process as the designer computes
the fuel temperature. The former is more useful to the operator because
it allows direct computation based on changes in the overall reactor
power.



Buckling and Criticality

If we go back to the neutron diffusion equation, we developed an equation
for energy groups with spatial variation within the reactor. Now suppose
there were only two groups and suppose that the system is in steady state:
the time derivative vanishes, and the delayed neutrons are combined with the
prompt neutrons as a constant source. Let the reactor have a uniform
composition, so the material properties are all the same over the volume of
the reactor.

Ignoring fast fission and thermal group up scattering, we could write the two
equations as:

1-2 h t
0= Dfastvz¢fast - ( ZgaSt + z:S )¢fast + vz]tc ¢th + VZ]]:aS ¢fast

th 1-2
0= Dthvz¢th - z:a ben + z:s ¢fast

These equations have a solution where the two fluxes are proportional to
each other. In this case the fast and thermal buckling are the same.
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With this idea let B2 = — and R = ¢/ Prase

0= —DyoseB” — ( BL +3[%) +vzfr  2f0 =£[® 4 5[

h .
0 = —D B2, — Zfl ben + Z{aStqbfast eraSt Is the removal cross section
from the fast group.

So
_ th fast fast
L]2‘a5t32 + 1= sz R/ Ztotal L%ast = Dfast/ztotal
t yth th
b =R = T2 TG Lin = Den/%a
th/ ¥ fast L%hBZ +1

And this gives the criticality condition:

h, wfast fast L =
OVZF/ Ziorad) (5 /28 (a—y oy = L

Or we could write:

Koo
(sz‘astBZ-I_l)(L?th-l_l)

= Koo PPy = 1




We have developed a simplified expression for the conditions for criticality
in a homogeneous system. The K, is a property of the homogeneous
medium for a given set of material properties such as temperatures,
pressures, and concentrations.

The non-leakage factors are a function of the geometry of the reactor as well
as the properties of the medium. It develops that the diffusion constants are

: 1
approximately: Dp 7, = PR hence L o« 1/pyqcer for both the fast and
S

thermal groups. So, for example, if temperature goes up, p, qter goes down
sO Lfast and Linermal g0 up. Physically this means that loss by leakage will go

up.
So, what is the buckling?

BZ — _V2¢th
ben

This expression gives an indication of the curvature of a scalar flux of
multiple variables. If B? is positive the flux will be concave. This is a
neutron producing region. If the quantity is negative, the flux will be
concave, and we will have a neutron absorbing region. In the later case B
would be a complex number.

For either the fast or thermal flux we have the following.
V2 + B2 = 0

To understand the implications of this equation, remember that we used
Fick’s law, ] = —DV¢ and the divergence theorem ( 71 is unit outward

normal to the surface bounding the volume.), This f is the vector flux in
some direction, the number of neutrons crossing a unit surface per cm”2

: jjfv*TdV:jjf*ﬁdSZ_jijVz¢dV

Using this we can observe that the buckling within a constant factor, is the
fractional leakage of the neutrons in a volume per second:



Bz__DjIj*ﬁds
I pav

We will solve VZ¢ + B*¢p = 0 assuming that the flux is near zero on the
boundary of our physical reactor. (A better approximation is to extend the
outer boundary slightly, but we shall ignore this.)

In Cartesian coordinates
V2$ + B%p =0
has a solution

¢(x,y,z) = Acos(Byx + 6,) cos(Byy + 5y) cos(B,z + 6,)

Now suppose that we have a rectangular solid reactor with the origin at the
center with each dimension extending from -rxy,»1/2 to Lixy.»}/2., this would
force 6; = 0 and define all the Bxy.. (n, m, p are integers 1,3,...)

¢(x,y,z) = A * cos(nmx/L,) cos(mny/Ly) cos(pnz/L,)
With this the buckling of the first mode n=m=p=1 1is:
T T T
B2 = BZ +B} + B} = () + (1) + ()
L, L, L,

Higher order modes can exist in some circumstances, but we will not discuss
this now. These higher modes do not persist.

If we worked this out for a cylindrical reactor we would get

2.405
BCer) = Avsin () o C0) B? = (2.;}705)2 + (%)2

Jo 1s the zeroth order Bessel function, H is the height of the cylinder, and R
is its radius. The origin here is on the axis halfway up.

As noted above, if a region has a weak supply of fission neutrons, the losses
dominate the problem, and an external source is required to prevent a zero-
flux in steady state. In this case B? < 0 so B is complex which leads to
solutions involving the sinh(x) and cosh(x). This happens if we consider a



two-region core, one rodded and one not rodded. As a rule, a region of the
core that is neutron producing overall will have a convex flux, regions that
are loss dominate will be concave.

How Does the Temperature Reactivity Behave?

Consider first a change in Tave. What happens as temperature goes up in the
reactor:

e Tave T pyyo | L T Leakage T Kpprl pyer I This must
dominate

o Tave T puzo T2 L Kopr T pyer T

o Tave T puzo d T8 L Kerr 1 prec T

Here we are using two ideas:

Non-Leakage:
1

P, =

f 2712
1 +Bfo

_ 1

1+ B33,

Pep

Thermal Utilization:

fuel
f 2:total

= fuel H20 Boron Everything Else
Yot a T Ig +z,

So, with temperature the reactivity could go either way. Most designs
attempt to have the first effect (leakage) dominate. so

apReactivity Net .
a,, = < 0 in most cases
w oT

1
apReacitiviL‘y Net 6(1 B Fff) _ 1 aKeff
oT B oT ~ Keff?2 oT
1/ 1 Opges 10Pr 1 0Py 10f
_<pReS dT ' P; T ' Py, oT +fﬁ>

K



11 - 1 ..
We will ignore the " term here because it is very close to one.

Pres Is the resonance escape probability. Here we have used:

Keff = epPsPufn

Leakage contribution

. 1 1 _LZ B2 _LZ BZ
If we approximate —;— and —5—-as e/~ and e "“th” then the leakage
1+BfL} 1+B3, L%,

terms become BZ(ZLf Oy + 2L, L”‘) and the diffusion lengths are

inversely proportional to pwater so these terms are

2 aLf O0L¢p 2 1 Opwater
—B2 (2L 5L + 2L, Z2) = 2B2(12 + L) p—

Thermal Utilization Contribution

fuel fuel
f _ Z1.“otal z:toi.“al

l Everything Else ~ «fuel NonWater InWater
gfuel | yE pfuel 4 sh + 34
total total

_vyInWater
1 af Z /pwater apwater

Then—=-— =

fuel NonWater  sInWater
for DY +zb oT

Now we know that (;”;‘” < 0. Using the absolute value:
1

(Z{oljtilll + ZgonWater)/(Zg/ater + Egoron) +1

Awater = |—2B*(LE + L%,) +

‘ 1 apwater
pwater aT

2
(L} + L7,) will be proportional to ( ) and xWater 4 yBoron il be

Pwater

proportional to py,qter-

Note that this equation is derived for a homogeneous un-reflected reactor. We
will treat £/%¢" + sNonwater a5 not a function of pyawr. None the less it is
instructive in understanding how @, 4t varies. We can see that:
e The magnitude (negative) will become smaller as a reactor
becomes larger.

o Alarger reactor design, lower buckling.



o Rods being pulled out in a bank over core life lowers
buckling.
¢ Increasing the amount of water relative to the other adsorbers will
reduce the magnitude if a,,..., Was initially negative.

. %% Increases with water temperature. Also L7 + L,
water

increase with water temperature so we expect a more negative
ayater At Operating temperature than we would in a colder reactor.
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Define a value W = (/¢ 4 sNonwatery ;(sWwater y sBorony  Thijs is the ratio of

metal born absorbers to water borne absorbers. Further recognize that the

. _ 1
quantlty lgwater -

diffusion lengths depend inversely on the density of water, we will establish
those as Ly = Lgopo/p, and Ly, = Lipopo/p- Also, the water born cross
sections will depend directly on the water density so:

Y= Wopo/p
= [-2B*(L%, + L}

apwater

1s a tabulated value. Now because the

water

awater

1
hO)pO/p + W ﬁwater

Assume the following purely hypothetical numbers:

L 6 cm (500°F)
Lino 4 cm (500°F)
H 130 cm

R 80 cm

To 500 °F

This yields a buckling of

2.405

2 _ 2 N2
B? = (==)* + ()* =0.0015.

Putting it all together we get the following example:
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<10 Computed Water Temperature Coefficient Variation
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Psi is proportional to the metal to water ratio in the system. As Psi goes up

the temperature coefficient tends towards the negative.
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The discussion provided above represents an un-reflected uniform core. Real
cores are not uniform and present a much more complex situation. In some
cases, neutron poisons are installed as pins or control rods. To a degree
these act as internal leakage surfaces and help to make «,,4.., negative.
Below observe an actual a4, plot for an operating reactor design. We can
see the impact of temperature and boron in these plots.
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For cores that maintain all rods out and control with boron concentration, as
the core ages fuel reactivity is reduced. The amount of boron needed is
reduced so the positive contribution to «,, is reduced. Remember these
reactors are run with rods fully out most of the time.
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Reactivity related to Fuel Temperature

(Resonance Escape - Reactor Power)
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Many isotopes have cross sections that vary significantly with neutron
energy. As shown here for U-238, there is a region from about 1ev to about
10kev with high neutron resonances. The atoms exist within the fuel matrix
and the matrix temperature is related to the vibrational energy of the atoms.
In low enrichment cores this has a major impact on the resonance escape
probability and hence on reactivity.

o The atoms each have resonant peaks
o The atoms actually vibrate randomly with a distribution of
energies given by statistical mechanics.
o As such a given neutron is presented an energy window for
capture in a specific resonance that is larger than the width
of the resonance in the reference frame of the atom.

In computing the resonant absorption probability and the resonant escape

probability the product of the energy dependent flux is multiplied by the
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cross section for a resonance and integrated over the energy. The
broadening of the peak in this product results in larger adsorption at higher

temperature. In the case of this neutron adsorption, this is known as doppler

broadening.

The fuel temperature rises as core power rises. The Power Coefficient of
reactivity, ar 1s expressed in one of two ways depending upon its
application. If the power level is being used to specify the resultant
reactivity, ap will have units related to pcm/power. In this use the
assumption is made that the temperatures in the fuel and related structure
reach equilibrium in zero time.

Apfuel = ap(P — Py)

Alternatively, the Power Coefficient of reactivity, ag, may be expressed in
pcm/temperature. This form of the coefficient is used for computing
transient behavior in fuel.

Apfuel = aF6Tfuel

15



Computing Reactivity and Power in the Presence of ay

Consider a prompt jump-based computation. Here we are assuming the left-
hand side of the first reactor kinetics equation is zero and basing the
transient calculation on an initial discontinuity in power followed by a
solution to the precursor differential equations. This then uses an algebraic
power calculation. We will use the power-based reactivity calculation,

Apfuer = ap(P — Py).
We have:
AY;A;C; + AS

P =
ﬁ - Apfuel — Pother

So, we need to solve these two equations for P and Apyye;.

A ACi(t)+AS (—B+pOtheT— aPy)
2i AiCi(t) and b = fro
ar ar
have a quadratic equation in power.

Letc= with these definitions we

P(t)2+bP(t)+c=0

P(t) = (—b +/b2 — 4c) /2

The negative radical is rejected because power is positive, and b must be
positive to meet the restrictions of the prompt jump assumption.

So

Finally:
Apfuel = aF(P(t) - F)

16



Reactivity Examples

Consider the following data:

The Fuel Reactivity power coefficient is: ar = —10 pcm/(% power).
The Temperature coefficient is: a; = —20 pcm/ °F

The initial Tave is taken as 500°F.

Rod Reactivity +40 pcm/inch out. One Step is 5/8 inch.

Suppose a transient happens in which power is increased by 25%, and Rods
are pulled 8 steps out. What will happen to plant temperature in the final
steady state?

The temperature reactivity needs to balance the net reactivity inserted.

Needed temperature reactivity to cancel reactivity change =
-[ (<10 pcm/% * 25%) +40 pcm/in * 5/8 in/step *8 steps)]=-50 pcm

Needed temperature reactivity = -50
AT =-50 pcm/(-20 pcm/ °F) = 2.5°F

A plant has a steady startup rate of 1 dpm below the point of adding heat.
How much reactivity is present? How much reactivity will remain when
power turns if the heat up rate is 0.092 °F/sec at its peak?

Assume: B = 640 pcm and Aq5r = %‘ Ignore sources and changes in 4,¢.

P+ Aerrp
SUR = 26.06 dpm—sec{W} SURﬁ .
(26.06dpm — sec) P
- SUR
Aess + (26.06dpm — sec)
a) p=0, SUR=1dpm, Acsf = 0.1/sec p =177.48 pcm
b) p=ar+0.092°—= —1.84 22 p = 18.46 pcm
c) SUR = 0.0 dpm

Keep in mind that in each case where we are using the one delayed group
approximation our numbers should be considered suspect at best. The
failure to account for A,¢¢ /A, leads to significant error.
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2. Interaction of Water Volumes and Temperature

Each water volume has a heat capacity.

— We combine the reactor volume with the
hot leg and the steam generator volume
T with the cold leg such that there is a heat

capacity for each, C:and a Cs. Heat flows
into the system from the reactor and out of
the volume from the steam generator.

The kinetics Equations will be the same as they were in the low power (no
feedback) operations section of the course (with reactor power less than the
point of adding heat).

When power is high enough to impact the temperature, this will impact the
temperature reactivity. The temperature of the system is a function of the
steam demand history and power history. The difference between the power
and the steam demand is the “mismatch”.

If (Power — Steam Demand > 0) Heat is added to the coolant and
temperature goes up.

If (Power — Steam Demand < 0) Heat is removed from the coolant and
temperature goes down.

In this case we are looking at this as two water masses, reactor and steam
generator 1gnoring the pipe transport times. Hot side water from the reactor
flows into the steam generator and water from the cold side of the steam
generator flows into the reactor. So, for example water coming from the
reactor would heat the steam generator and heat removed by steam would
cool the steam generator. The water is force along the system by a pump
and we will ignore any heat introduced by the pump.

The rates of change of the hot and cold leg temperatures are proportional to
the difference between the water entering each volume and the water leaving
the volume. If this difference is positive the temperature will rise (positive
derivative) otherwise it will fall (negative derivative). For the reactor the
water leaving is Ty, and the water entering is T,. The reverse is true for the
steam generator. The heat introduced to the reactor when divided by the
heat capacity of the water in the reactor is a positive contribution to the rate
of change of temperature. The heat removed from the steam generator
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divided by its heat capacity contributes a negative contribution to the steam

generator.

Each volume is experiencing a “fill and drain” transient. If we held the
temperature of the incoming water constant and ignored any other heat
introduction, the temperature of that volume would be a transient from its
initial temperature to the temperature of the entering water with an
exponential transient:

T,(t) = T’l;”itiale—f/‘fr + T.(1 - e—t/rr) _ Reactor Water Volume

T =
" Reactor Water Flow Rate

We will ignore the change in water density that this change in temperature
creates. So, we will directly relate system volume with water mass.

dl,  Tc—Ty
at 1,
dT, T, —T,
dt T

b
+ J—
Gy

7, and C, apply to the source
including the hot side piping. Both
quantities are proportional to the
mass of the water that is contained
in the volume. (We will ignore the
effects of the metal for now.)

T, and C, apply to the steam
generator including the mass of
water within the cold side piping.
The values of P. and Q, are
positive.

We will ignore the change in water density that this change in temperature
creates. So, we will directly relate system volume with water mass.
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So, with these concepts put together, we can write the following matrix
equations for our coupled reactor, steam generator system.

T = Th] 4= [—1/TT 1/, ] P.
Te 1/Ts _1/Ts B C,
R
Cs
dT t
E=AT+B T(t) = eAtT0+eAtj e 4" « B dt’
0
T, Ts

A is singular, the eigenvalues are zero and —1/7,¢s where T,¢r = —
T N

The steady state difference in the two temperatures will be proportional to
the sum of the reactor and steam generators (both taken as positive).

P, Q
AT = reff(c—: + C_z)

The steady state average temperature with P. = Q is best found using
conservation of energy:

Ty, = Tjmitial 4 Tefr &_& = initial | TeffPT l_l
ve ve 2 Cr CS ve 2 Cr CS

The heat capacities and the time constants are proportional to mass. We may

define the fraction of the total mass of fluid that is within the reactor as p,
and we have:

Ty = HUTg, Ts = (1- .“)TO, Cr = uCo, Cs = (1 =) Cy,

Using these definitions, the average temperature becomes as derived below:

T, — Tinitial _ T (2r—1)
Ave Ave ZCO
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The steady, state mass weighted average temperature will be constant. This
is what causes the Tave to droop or rise when the hot and cold legs have
different volumes:

uTp + (1= T, = T

tial final
T+ (L= T, =~ = TR T
Th +T o
.u(Th - TC) + T, — h : c_ T/{génal TA];L;Lal
Pr Qs u(l =ty Pr 1 1 T Pr
= 'ry X¥s | — . _
UAT — E = Ai:;létial TAfmal
ve
2 B 1 . g
(’uz—)TO Pr/Co — T[métlal TA];l:al

This is equivalent to saying that if the heat flow in and out of the system is
balanced, the total energy in the system remains constant.

For the case where the reactor and steam generator are both constant loads
(balanced or not), the two temperatures may be computed as follows:

TrTs I 1 0 eAt = J47 (1 — e_t/reff)A
Teff = U= +4 | I= eff
T,+7T, Tofs t [O 1
t
K(t) = f e_At’ * B dt’ = lt Tefo + Teffz (efeff —_ 1) Il AB
0
&
CS
Th] At [Th] At
= + e K(t
ks Tl ©

This equation will have serious numerical problems computationally due to
the positive exponent in the K(t) factor. This may be remedied using the
following equivalent formulation.

(I+71oA)A=0 T,
7=

T _ t
At [Th] +tTefoB) —Teffz *(1_9 (Teff)>AB
cdo

If the heat flows between the steam generator and reactor are balanced, then
the factor UB = 0 so the term that is linear in t will vanish. In this balanced
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case the final TA];L;lal = Tl —10.5,0.5] * 7.7 AB. This simplifies to
the same equation for the steady state average temperature that we found

above.

The expression for e4t above was developed by finding the eigenvalues,
{d;} and modal matrix, M, related to the A matrix and then following reverse
diagonalization, (See Note 6):

et = M diagonal(e?t) M1

The equation K(t) represents the integral factor:
t
j e~ x B dt’'
0

The integral term has been computed assuming that both heat flow rates are
constant in time. If this is not the case, K(t) will need to be recomputed.
Performance of this integral is greatly simplified by using the form
developed for e4t above.
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Example:

Consider a system where AT'?% = 75°F, 7, = 50. With full power being
100% the base heat capacity, C; = 100% = 1o _ 66.66 [% — sec/°F].

AT100%

Using the equation above we find the following.

Equal T, and T_, for a Step Transient " AT for a Step Transient
490 T T T T
— T Thot o i
Masses Teod _—
480 ) Tave 70 -
470 60
T 460 @ 50
s °
s g
s 450 a0
2 o
8 g
5 5
= 440 30
430 20
420 N woff
410 0 . .
50 100 150 0 50 100 150
Time (sec) Time (sec)
Unequal P Thot and T, for a Step Transient w0 AT for a Step Transient
— Thot o
Masses Toold _—
H. _ O 7 5 460 Tave || w0 /
450 60
|
\
o 440 | 50
° \ °
2 \ 1
G| & 40
g \ ©
a \ 8
£ \ g
2 O
420 = 30
410 20
400 10
390

150

Time (sec) Time (sec)

Loop Transport Time

This presentation has ignored the effects of loop transport time within the
reactor/steam generator system. This may be modeled effectively as a time
delay in both legs of the system. This phenomenon is discussed in “Note 3”
at the end of this document. The impact of the delays is discussed and then
analyzed using Laplace (frequency domain) analysis.

24



MATLAB Code

What follows are MATLAB codes that can make plots for the hot, cold, and

average temperatures in this problem. They also plot the difference between
Th and Tc.

The first version of this code uses the equations that we have developed for
the various steps in this effort. The second version uses a MATLAB ODE
solver to directly integrate the differential equations. The two methods
produce the same result.
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LoopTimeDomainPowerStepTransient.m
William Locke
July 2025

This code demonstrates the temperature performance of a
coupled heat transfer system with unequal water mass loops.
The 2 by N matrix holds the hot and cold temperatures

as the transient happens.

function LoopTimeDomainPowerStepTransient()

N = 1000;

Tfinal = 150;

Pr = 100; Q_dot = 100;

RMF 0.75; % Fraction of the water that is in the reactor.
Tau = 50; Tau_r = RMFxTau; Tau_s = (1-RMF)xTau;

C = 2/3%x100; Cr = RMF*xC; Cs = (1-RMF)xC;

Teff = Tau_rxTau_s/(Tau_r+Tau_s);

0 o o P o o o° o°

B = [Pr/Cr;-Q_dot/Cs];

A = [-1/Tau_r, 1/Tau_r;1/Tau_s, -1/Tau_s];
U = eye(2)/Teff+A;

T = zeros(2,N);

To(:,1) = [450;450];

t = zeros(N,1);

for i=1:N

t(i) = (i-1)/(N-1)*Tfinal;

EAT = eye(2)+Teffx(l-exp(-t(i)/Teff))*A;

T(:,1i)= EAT*(To+ t(i)*TeffxUxB) -...

Teff 2% (1-exp(-t(i)/Teff))*xAxB;

end
figure
plot(t,T(1,:),'r"',t,T(2,:),"'b",t,(T(1,:)+T(2,:))/2,"'——k")
title("T_{hot}, T_{cold}, and T_{Ave} for a Step Transient");
xlabel("Time (sec)");
ylabel("Temperature \circF");
legend("Thot","Tcold","Tave")
figure
plot(t,T(1,:)-T(2,:))
title("\DeltaT for a Step Transient");
xlabel("Time (sec)");
ylabel("Temperature \circF");
Final_Delta_T_Ave = 450+(T(1,end)+T(2,end))/2 —(To(1)+To(2))/2

end
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LoopTimeDomainPowerStepTransientODE.m
William Locke
July 2025

This code demonstrates the temperature performance of a
coupled heat transfer system with unequal water mass loops.
The 2 by N matrix holds the hot and cold temperatures

as the transient happens.

function LoopTimeDomainPowerStepTransientODE()

N = 1000;

Tfinal = 150;

Pr = 100; Q_dot = 100;

0° 0P o P o o o° o°

RMF = 0.75; % Fraction of the water that is in the reactor.
Tau = 50; Tau_r = RMF*Tau; Tau_s = (1-RMF)%Tau;
C = 2/3%x100; Cr = RMFxC; Cs = (1-RMF)xC;

Teff = Tau_rxTau_s/(Tau_r+Tau_s);
B = [Pr/Cr;-Q_dot/Cs];
A = [-1/Tau_r, 1/Tau_r;1/Tau_s, -1/Tau_s];
function dTdt = TargetFunction(t,T)
dTdt = A%T+B;
end
T = zeros(2,N);
To(:,1) = [450;450];
[t,Thist] = ode45(@TargetFunction, [0,Tfinall,To(:,1));
T = Thist';
figure
plot(t,T(1,:),'r',t,T(2,:),'b",t,(T(1,:)+T(2,:))/2,'—k")
title("T_{hot}, T_{cold}, and T_{Ave} for a Step Transient");
xlabel("Time (sec)");
ylabel("Temperature \circF");
legend("Thot","Tcold","Tave")
figure
plot(t,T(1,:)-T(2,:))
title("\DeltaT for a Step Transient");
xlabel("Time (sec)");
ylabel("Temperature \circF");

Final _Delta_T_Ave = (T(1,end)+T(2,end))/2 —(To(1)+To(2))/2
end

27



3. Steam and Reactor Power Dynamics in a Thermal Reactor

Time Spent on the Big Picture

What happens when we draw more steam off a reactor (increase steam flow)

Start in steady state Reactor Power = Steam demand, Temperature is
constant. Pressurizer level is Constant

e Open the Main Steam Valve

e Flow in the steam system goes up. Steam Pressure Drops

e More boiling happens in the steam generator because the
pressure dropped.

e Average Temperature in the Steam Generator (steam side) goes
down.

e Heat transfer across the Steam Generator tubes goes up.

e Tcdrops, This the same for the moment.

e When the colder water reaches the reactor, positive reactivity is
inserted.

e Reactor Power goes up which increases Th, this raises Tave.

e Steady state will have a larger delta T, (Th-Tc), reactor power will
match steam demand.

e [f we are using high enrichment fuel, the Tave will be recovered to
its original value. If we are using low enrichment fuel, Tave will
drop due to doppler broadening. A boron or rod adjustment will
be needed.

The pressurizer will have had an out surge during this transient.
The power may or may not have damped oscillation around the final value.

Whenever reactor power is greater than steam demand Tave will go up.
Whenever reactor power is less than steam demand Tave will go down.
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Nonlinear Equations

The effect of a time variable reactivity is that the solution will not have the
form et as before. That solution required linear equations without time
variation in the coefficients.

We can still think in terms of a matrix and vector based coupled system.

The solvers that we will use will be mathematical methods that will be
chosen based of the numerical difficulties of the problem. If the prompt
jump assumption is used and the reactivity is far from f we will generally
get good results. This makes an eighth order system of coupled equations (6
— reactor kinetics, and two temperature).

When using MATLAB, the function ode45()(with ‘RelTol’ set to 1e-6) is
usually sufficient for making this solution method with the prompt jump
assumption. If Numerical noise appears in the data odel5s() is
recommended.

As an alternative to this approach, one could also approximate the solutions
to these equations by using a home grown fourth order Runge-Kuta or even
by using an iterate solution of the following form.

Xie = (I = (A/ D5, )™ (U + (A/ D) Xis + Trpsey)
But in any, case A would need to be recomputed for each k or nearly each k
depending on the step size and the required precision. This is costly and not
as dependable as using the MATLAB built in ODE solvers. The major
advantage of the MATLAB solvers is that they vary the step size to optimize
execution given the rate of change of the solution.
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Modeling plant behavior with Reactor Kinetics and Steam Flow

We will consider the effect of sources (S) to be unimportant for this section.

One line example: Prompt Jump Power -> P = %
dc;  p.P BiAY; A Ci(E)
—=——/1C=——/1C=Z A; C;(t) — A,C —p(t —p(t
dt A 101 A(B —p(t)) 16 ={ . B Ci(t) 1 1(3 p( )))}/(ﬁ p( ))
13
Gy B/ 07
Gz B2/ 2z 0
Cs B3/ 0
_| o |SGPower
X)) = g“ X0(0) = |Pe/ 24 No =, C.
CS Bs/As| A 0
6 Be/ s 0
Ty 0 L1
5111 - 11 (ﬁ - p) ﬁl’lz ﬁlAS ﬁ124 ﬁ1ls ﬁlﬂﬁ 0 0
B2 B2z — 22(B — p) B2A3 BaAs Ba2s B22e 0 0
BaAy B, BsAs-a,8-p) BsAy Bals BsAe 0 0
ﬁ4l1 ﬁ4lz 3423 5424 - 14([’) - P) .8415 ﬂ4l6 0 0
A= 1 ) BsAy BsA, BsAs Bsay Bsds — As(B — p) Bsle 0 0
h B—p Bt BeAa Bels BeAs BeAs Bl — As(B — p) 0 0
AL/, AL/, Mo/, M /C, Ms/C, mee, LD R
0 0 0 0 0 0 (ﬁr;p) M
dX Compute p and P with the following equations:
—=AX+T
dt _ 6@ p(t) = p°eT(t) + ap (P(t) — P(0)) O AY A ()
P(t) = o= AuhGO
B—p®) ar
dTave = (Tave - TO) b=(-p+ awdTave+ Puther - leP(O))/O(f
P(t) = (=b + /b2 — 40)/2

P, is a reference power, and p°"¢" is the reactivity due to effects other than
power. This includes water temperature reactivity p¥*¢" = a,,(Type — To),
Tave = (Th + Tc)/z

Example Transients Computed with MATLAB based on these equations:

The Fuel Reactivity power coefficient is - 10 pcm/percent.

The effective Beta is taken as simply the natural Beta.

The initial Tave is taken as 500 degrees F.

The target full power steady state AT, (Tn-T¢), is set as 75 degrees F. The
temperatures are referenced to Tave S0 at zero power Tp = T = 0;

Plots with and without fuel temperature feedback are provided.

The water temperature coefficient is -10 pcm/degree. Pipe transport delay
time is not considered. The hot and cold plenum t’s are 25 sec.

Ambient heat loss and pump heating are ignored
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Power (red) and Steam Demand (dashed) - No « included

1

50 100 150 200 250
Time (sec)

Tave (green), Th (red), Tc (blue)
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Time (sec)

Startup Rate

SUR Contributions: A (Blue), dp/dt (red) and d\/dt*(1/)) (green)

50 100 150 200 250
Time (sec)

T

50 100 150 200 250
Time (sec)

Rod Pull at 20% Power vielding 250pcm over 10 seconds

The power rose and then came back to its original value. Temperature rose while power
exceeded steam demand. The final temperature rise is 25°F. The 20% power AT is 15°F.
Notice the jump in Sur on the rod pull. The pull ramps from time = 20 sec to time = 30

sec. The initial jump in SUR is 26.06dpm — sec(

250/10sec
640

) = 1.02dpm.
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Steam Demand is Raised from 1% to 20%

Power (red) and Steam Demand (dashed) - No « included
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0 50 100 150 200 250 300 350 400

Time (sec)

Steam Demand Change 1% to 20% No Fuel Temperature Feedback

This is a ramp increase in steam demand, starting at a low power. The response
includes an initial drop in T, Tave, and Ty - followed by a quick overshoot in power.
Following that power settles out at the new steam demand. Look at the SUR

contributions at the point of power turning. Note that it is zero at that point. Look at Tave

at the point of power turning. What does this tell you about the reactivity?
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Steam Demand Change 1% to 20% with Fuel Temperature Feedback

This is the same transient as the last one but with fuel power reactivity feedback included

in the model. The feedback slows down the response. As you would expect, the Tave
droops in response to the power increase by 20.0°F.

33



Steam Demand is Raised from 20% to 40%

Power (red) and Steam Demand (dashed) - No «; includ
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Steam Demand Change 20% to 40% with No Fuel Temperature Feedback

This is another 20% steam demand change - the results are quite different. The power
more closely tracks with steam demand and the overshoot is reduced. The difference is
that we ended this 20% power change at a higher power. In the next section of this paper
we shall see that at higher powers there is more damping.
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Power (red) and Steam Demand (dashed)- « included
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Steam Demand Change 20% to 40% with Fuel Temperature Feedback

Notice how the feedback has caused a slowing in the response. The shift in
Tave 1s the same as in the previous case.

35



Power (red) and Steam Demand (dashed) - No «; included
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Multiple Ramps in Steam Demand Followed by Shutdown — No Fuel Feedback.

Steam Demand ramps from 10% to 40%, 40% to 70%, and 70% to 100%, followed by a

Turbine trip. Why did the temperature go up at the end of the transient? Why did the
temperatures converge? Why did we get the sudden drop in SUR at 700 sec?
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Power (red) and Steam Demand (dashed)- «, included
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Multiple Ramps in Steam Demand Followed by Shutdown — With Fuel Feedback.

Steam Demand ramps from 10% to 40%, 40% to 70%, and 70% to 100%, followed by a

Turbine trip. This case includes power reactivity feedback. Comment on the final
temperature — is this realistic? What problems do you see?

37



Power (red) and Steam Demand (dashed) - No o, included
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Shutdown From 100% - Without Fuel Feedback.

Notice the apparent steady state SUR after about ten minutes. Why does the initial SUR
transient look the way it does? Why is Tave in the final case higher than the initial
temperature? Comment on the final temperature — is this realistic?
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Power (red) and Steam Demand (dashed)- o4 included
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Shutdown From 100% - With Fuel Feedback.

Contrast this with the previous case. Why does the final Tave wind up as it does?
Comment on the final temperature — is this realistic? What problems do you see?
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Power Turning Revisited

Consider a problem the following statement and results:

A plant has a steady startup rate of 1 dpm below the point of adding
heat. How much reactivity is present? How much reactivity will remain

when power turns if the heat-up-rate is 0.092 °F/sec at its peak? For
this case ay = —20 pcm/°F

Assume: = 640 pcm and A ¢f = S%. Ignore sources and changes in

)lefjh
P+ Aerrp
SUR = 26.06 dpm — sec {ﬁ} SUR % B .
(26.06dpm — sec) P
- SUR
Aesr + (26.06dpm — sec)
[) =0, SUR =1 dpm, p = —p.//leff
Aesr = 0.1/sec
. . F pcm p = 18.46 pcm
p = arx0.092 sec —184 sec At the point of power
SUR = 0.0 dpm turning. Initially the
reactivity was 177.48 pcm to
get the one DPM SUR.

We will now reconsider this problem using the kinetics solution applying the
prompt jump assumption as above. A rod pull is used to establish a one
decade per minute startup. This requires a reactivity of approximately
0.25p8 = 160 pcm rather than approximately 0.28f required using the A.¢r =

%1 The actual Aesr (prior to the heat up beginning) rises to about 0.118 -

sec sec

Once the power is high enough to cause heating the changing water
temperature reduces the net positive reactivity, and it introduces a p which
also impacts the startup rate. In this case the power turns with a reactivity of
46.9 pcm. This is significantly higher than the value found above. This is
because the standard startup equation ignores the time rate of change of

Aeff.

We derived the following equation:
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P+ Aesrp + /1e.ff

SUR = 26.06 [dpm — sec] B=p)

Aefs
The kinetics solution may be used to find this ratio at the point of power turning. The

value jeff = —0.004256 1/sec. Also. at the peak power A,7r = 0.0929 1/sec.
eff

We may use the equation for reactivity again as above with the startup rated modified as:

SUR' = SUR — 26.06 (dpm — sec) SUR' + B iy
. Aefr _ (26.06dpm — sec) p
2 SUR’
err Aess + (26.06dpm — sec)

So, at the peak, SUR would become 0.1109 dpm. Using the equation for the reactivity at

the peak we obtain 47.04 pcm which is much closer to the kinetics equation result.

The following plots support the power turning discussion.
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Stability Analysis

The stability of a system may be examined near a fixed point using a
perturbation theory approach. It is important to understand that unlike a
linear system, a nonlinear system may not be globally stable because it is
stable at one fixed point. For our case we will consider an initial steady state
condition as a fixed point examining the behavior of the system about that
point when we disturb it. This could be something like moving the power off
its steady state value. Our systems will be stable, but the resulting
eigenvalues will vary with initial power. We can also see how the
perturbation evolves in time.

Start this analysis using a six delayed group model with a single Tave.
We are ignoring fuel feedback for this analysis.

_ AXE_, X
B—p
Tave _ °
ar (Prx — Qs¢)/c
ac;, p;
—J_HOp_.c.
dt A P=46
dTgve o de_O
Now suppose that our steady state has p, = 0, 0 = 0, = 0 and let

each variable parameter take the form Para = Para, + 6Para:

6
(Po +6P)(B = @wdTawe) = A ) 24(Cio +6C)
i=1
And from the steady state condition this becomes:

6
SPB — Pyaty,6T,pe = AZ A,6C;
i=1
Because:

6
PO,B = A Z AiCi_o
i=1

We have also ignored a product of two perturbations: 6P 6T,,, = 0
Solving this for the perturbation in power we get:

oP = 1/ﬁ [AZ?=1AiSCi + POawaTave]
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Now substitute this into the equations for Cl, T.

_ Bi[X5-1 A:8C; + Pyt 6Ty ]

¢ z — 8¢
[AZiG=1Ai5Ci + Poaw6Tave] _ Q
. B SG
T =
C

While these equations look dreadful, we can put them into a simple matrix form as
follows:

ocT(t)
v e
(51 - ﬁ)ll ﬁlAZ ﬁ1/13 ﬁlll‘l— 31/15 ﬁ116 awﬁlpo 562 (t)
Aﬁp 563 (t)
B2y (B2 — B2, BaAs Bars Bas BaAs a’wfz L =|6C,(0)
o ﬁﬁ P 6Cs(t)
Pty Pate (Bs = B)4s Bady Bsls Bss WA; : 8Ce(t)
-5 # ful bhs G-t Bae i, PPl e
= I 141 42 43 4 4 45 16 Ap )
wBsP
P Bs PsAs BsAs (Bs—P) s BsAe : /[i; : 8
= 0
el pea Fots Bols Bds  (Bs—F)s %ﬁfo 0
0
% A_/12 % % % A_AG Py [~ Qsg/c]
Cc Cc c c C C cp CT,
[B1/ ]
B2/ 2
P0 B3/ 23
A Ba/Aa
Bs/2s
Bs/ 26
| o |
And
d(86CT)
=¥ 46CT +R
dt

Is a linearized equation for a small perturbation around our fixed point. The matrix ¥ is
constant for a fixed point Po so we may use linear methods to study its eigenvalues and

find the linear equation solution to observe the progress of the Perturbation in time.

SCT(t) = e"tsCT(0) + v~ 1(e"*— DR
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The system will be stable where the eigenvalues have no roots in the right
half of the complex plane. The system oscillation will also depend on these
roots. We will now go on to study the behavior of these roots as well as the
implications of the various models:

e One Delayed Group

e Six Delayed Neutron Groups

e Full Reactor kinetics (See Note 1.)

One Delayed Neutron Group

Keep in mind this is a poor approximation group because it assumes a
constant effective precursor decay constant. We do it only to simplify the
computation as an example.

If we consider a one delayed group version of this problem, we obtain a two-
by-two matrix as follows:

0 ayPo/A R_[ 0
v=|Ayr a,P, — [—Qsc/cl
cB cB
I3
CTo = =\ oy
0

Upper left element is zero because the expression % — 1, =0. We

replaced f; with § and no other f; exist.

Now compare the stability matrix with the model used for plotting reactor
power and steam demand transients.

The matrix above has the following eigenvalues:

ay P

420rrCf

o o, — eff 1/2]
= 1+ +———-
e+ 2¢cf [ S ayPo )
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Any value of a,, > 0 will give an unstable root. Further if «;, < 0 the
4herrcP
awPy
will appear as a conjugate pair. The complex roots imply a damped

oscillation.

system will have complex roots only if | > 1. In that case the roots

Suppose we establish initial conditions for 0.99% power but force a 1%
steam flow. The system will allow power to rise to a steady state value of
1% but with extensive oscillations.

Single Delayed Group Model Perturbation
1% Steam Flow

One Delayed Group Perturbation - Lambda Effective = 0.0771 (1/sec)
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The ringing in these solutions is due to a small damping predicted by the
single delayed group model. The real part of the two eigenvalues is -0
.00023 1/sec. So, the damping is of the form €239 at 1% power. This
predicts a small power oscillation, which would continue for over four
hours. This model is incorrect, power does not oscillate for this extend time.

. . e .
This largely due to ignoring =L as we have discussed.

Aeff
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Six Delayed Neutron Groups

The six-group prompt jump assumption model is damped in about a third of
the time of the one delayed group case.

Six Delaved Group Model Perturbation at 1% Steam Flow (Kinetics Solution)

Power and Steam Demand
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The six-group matrix will have seven eigenvalues and for all power levels
one pair of these eigenvalues will be complex. This differs from the one
delayed group case.
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These plots tell us that at high power we may still see some overshoot but
that the damping will be strong at those powers.
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Six Delaved Group Solution and Stability Matrix Perturbation
1% Steam Flow

The first plot is a time domain plot for the transient using the solvers used
previously in this paper. The second plot time domain solution of the
stability matrix method of the system for the CT(t) vector of precursor
concentrations. The subsequently power is computed from that vector.
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It should be noted that the perturbation settles out to zero similar to the
actual power transient. This plot shows the perturbation in power settling
out to zero, leaving the power at its steady state value. The key here is that

the frequency and duration of the transient is a close match to the full six-
group solution.
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This is the same case repeated for 100% steam flow.

Six Delaved Group Solution and Stability Matrix Perturbation
100% Steam Flow
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This is the full solution for the same 1% perturbation at 100% power. The
matrix method (second plot) somewhat under predicts the overshoot and
crosses zero later than the full solution shown here in the first plot. It is
interesting to note that in the case of the 1% Steam Flow shown earlier, the
agreement between the stability method and the full solution were nearly
exact.
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By contrast the single-delayed group method significantly over predicts the
length of time for this transient to die out. The oscillation in that case
continues to be observable for at least 150 sec as compared to about 70 sec
in the six-delayed group case. The Stability Matrix approach for this case
also exhibits the under predicted overshoot and later zero crossing as we saw
for the six-group case.

One Delayed Group Model Perturbation at 100% Steam Flow
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Conclusion

Use of the six-group Stability matrix may be helpful to obtain confidence in
a model based on six delayed neutron groups and a single system Tave. The
one delayed group stability matrix is not recommended for this purpose.
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Notes
1. No Prompt Jump Assumption.

A full kinetics version of the stability matrix has the following form, Note we use S
rather than Psi here. This S should not be confused with the

B arP, a,, Py A
- K + A /11 ﬂ,z /13 /14 /15 )16 A ﬁl//’{l
B B2/ 22
o -4 0 0 0 0 0 0 cr, = Po |Ba/a
B2 A | Ba/ A
n o -2 0 0 0 0 0 Be /A
Bs Be/ s
W= 0w 0 0 —-A 0 0 0 0 M
P o0 0 0 -1 0 0 0
A
Bs
0 0 0 0 0 —A 0 0
% O 0 0 0 =2 O
1/C 0 0 0 0 0 0 0

This is significantly better at 100% and slightly better at 1% power as compared to the six-
group prompt jump version of the solution. This version also allows a fuel reactivity
correction. The plot below has this correction set to zero to allow comparison with the
previous plots. The error is computed as the absolute value of the difference divided by
the full kinetics solution times 100%.

Full Kinetics Model Perturbation at 100% and 1% Steam Flow
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Full Kinetics Perturbation
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2. The analog one delayed group stability matrix is a three-dimensional matrix with a CTO
vector that contains variation in power, precursor concentration, and temperature. This

system is as follows:

CTO ==

A

B/ sy
0

Py
A

This version will be consistent with the one delayed group reactor kinetics equation. The
excessive damping time will remain as discussed above. That is an inherent problem with

the one delayed group.
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Note 3. Transport Delay

Real reactor plants pump fluid between the steam generator and reactor and the time to
make a single loop will vary among the plants. Times may be as small as a few seconds
in a small reactor system to a large fraction of a minute for reactors with low or no
pumping power. For this discussion we will consider the impact on the hot and cold
cycle temperatures given reactor and generator time constants. The delay times are half of

. Loop Transport Time .
the loop transport time. So tReactor = gGenerator — ¢ — 227D £ . We will

not consider the impact on reactor kinetics here. We focus only on the fluid system
transient as discussed in Section 2 of this paper.

The differential equations become the following.

dTy _ Tt =) ~Ta(®) P,
dt T, C,

dT, _ Th(t - Td) — T Qs
dt T Cy

This system of equations does not allow normal solution because of the time
delays. We will study this system using Laplace transforms but first,
MATLAB does provide a means to directly integrate the equations with the
time delays. Again using 7, = 75, = 25 sec. We get the following on a step
change in both reactor and generator power from zero to one hundred
percent.

A Tvs. Time

140

. . n )
0 50 100 150 200 250 300
Time (sec)

This set of graphs demonstrate that the impact of high loop transport times is
to cause the system to have significant oscillation in its temperatures. At
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the same time, small delays cause the damping to be more rapid, note the
case for a ten second loop transport time. However, beyond that value we
see overshoot of increasing significance and a slowly damped oscillation.

The key to understanding this phenomenon is to consider this problem in the
Laplace domain. We need a new fact about time delays and the Laplace
transforms.

Assuming that 74 is a constant, and that the transform of g(t) is G(s). then
the transform g(t-t4) is e *@°G(s). This may be demonstrated by going
back and reviewing the integral definition of the transform and by making a
time substitution in the integral.

With this, the Laplace transform of the differential equations become the
following:

e "PT(s) = Th(s) | P
sTy(s) = +
n T, sC,
e Ty(s) = Te(s)  Q
sT.(s) = . — S Cf
S S

Th(s)
Tc(s)

matrix form. Multiply by the time constants and collect all temperature terms on the left-
hand side.

Put the temperature terms in vector form, T = l and rewrite our equations in the

TP,
[1 + 7,8 —e_TdS] _ 1] G
—e S 14148 S —T'SQS
Cs
Given this we can write a transfer function as follows:
[1 + 1,8 e s ] TP,
e 'S 141,85 11 G

T A+ TS+ 18) — e 2w 5| —1,Q,
Cs
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5 2]

—C a
ad—cb

used the fact that squaring the exponential adds a two to the exponent.

We have used the fact that the inverse of [‘; Z] is and we have

So, our transfer function is:

[ 1+7s —e‘TdS]
. —e 'S 1+1,s
(1471,5)(147.5)—e ~2%dS

And

Studying the behavior of our system now starts by studying the roots of the
denominator of H. Complex roots of this denominator will result in
oscillation.

To begin, this denominator continues to provide a singularity at s = 0.0 for
all values of the delay. This is because e is one so the denominator
becomes (7,+7;)s + 7,752 and this will be zero if s is zero. The other root
happens when s = —(7,+75)/ T, Ts = —1/7.¢f.

Using the values t,, = 7, = 25 sec we can numerically find roots that are
real below a “Departure Value” at a delay time, 74, = 6.9615 sec. Below
this Departure Value, the existence of the exponential contributes an
additional real root. Plots of the denominator look as follows:
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For all small positive values of 7 the graphs have the same shape, crossing
zero at two negative values of s leading to two exponential decay terms.
These are the real roots. This is true until 74 justis T = 6.9615 sec. At
this point the hump no longer reaches the zero axis. From that point on the
roots are complex leading to oscillation.

Here is a detailed plot of the real roots for the time delay below the
Departure Point.

N Real Roots below Depature Point
Root 1
— — - Root 2
01 ai —_—
02f )
03[
04

-05 -

Real Root

-06 -

-0.7 -

-0.8 -

-09

The root that is identified as “Root 2 will provide a term which will decay
rapidly compared to the decay or the “Root 1” term. We expect the resulting
plot to have a character driven by the later.

Once we reach the Departure Point, we will have complex roots leading to
damped oscillation. The roots will have complex roots that appear in
conjugate pairs.

Real Part Roots above the Departure Point Imaginary Part Roots above the Departure Point
T T T 01 ———

Real Root

57



Note that as the time delay increases beyond the Departure Point the
magnitude of the real part of these eigenvalues becomes smaller. This
means that the oscillations become less damped as the time delay is
increased.
To understand the statement concerning conjugate pairs we will decompose
the denominator into real and imaginary parts, both of which must be zero at
a root.

1+ 17,51 + t45) — e 2%aS
Substitute s = 0 + jw

147,00+ jo))A+ 1500 + jw)) — e~ 2Tale+jo)

Multiply the left-hand side and write e ~2%a(0+j®) a5
e 2%% (cos(2t4w) + j sin(2tyw)

This results in the following two equations:

Real Part 1+o(r, + 1) —1,75(0% — w?) = e 2% cos(2T W)
Imaginary Part w(t, +15) = e 217 5in(2tyw)

Examining the equations we see that if 0 + jw is a solution then, 0 — jw
will also be a solution. We use the fact that the cosine function is even, and
the sine function is odd.

We have focused this discussion only on the zero and other roots with the
smallest magnitude real parts. These will dominate the solution. The two
equations shown above will have a vast collection of possible solutions of
the form o + jw due to the transcendental character of the sine and cosine
functions. But, for reasonable values of the time delay, these roots will have
a significantly larger damping constant and result in rapidly vanishing
portions of the time domain solution.
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Return to the time domain plot that we saw at the beginning of this
discussion.

A Tvs. Time
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If we look at the case with a 40 second delay and measure the distance
between the last two peaks in the red curve, we have roughly a 120 second
period. The radial frequency at this point using our Imaginary Part above is

roughly w =0.0084 1/sec. The period would be zf and this 1s 119.7

seconds. This demonstrates the relationship between the Laplace and time
domain approaches.
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Note 4. A Four Group Criticality Calculation

We solved a two-group example criticality calculation in this paper. It would
be instructive to do a similar calculation assuming a four-energy group
system. Real criticality calculations use far more than four energy groups,
but the methods used in those cases are like what we will do here. We will
continue to think of only a homogeneous one region reactor for this case. We
will also approximate the flux as being zero at the boundaries of the cube.

Here is some typical data for four energy ranges:

Group 1 Group 2 Group 3 Group 4
Energy | E>0.821Mev | 5.5 Kev<E<0.821Mev | 0.625ev<E<5.5Kev | E <0.625ev
Ranges
D 1.40 cm 0.9 cm 0.55 cm 0.30 cm
X 0.98 0.02 0 0
v, | 8.00x10° cm' | 8.42x10* cm’! 1.214 x102 cm’! 1.32x10"! cm™!
T, 3.714x103 cm™ | 2.170x1073 cm’! 2.369 x107%2 cmr 8.379 x10?2 cm’!
1
Tgout | 0.0243 cm’! 0.0628 cm™! 0.570 cm™ 0 cm!

In-Scattering Matrix

0 0 0 0
g _ |0.0243 0 0 0 L
Zs 0 0.0628 0 o |
0 0 0.0570 13588

Note that the sum of the columns in this matrix with the diagonal elements
removed is the scattering removal cross section for the associated group. We are
using a simplified case where scattering moves us only one group down and self-
scattering is ignored.

These values have been manufactured to be reasonable but they do not represent
any real reactor and should not be used beyond the context of this example.

We can now write the diffusion equation for the multi group system as follows:

A D X
ot + Zeout -2, -9, -9, D! 02 0 0 %
e - - 0 D 0 O
g 2 2 g g -
= 2 21 Za" + Zsout —Z 23 = 2,4 “1lo o D® o0 _ Xz
_2:93,2 _2:93,2 2o’ + Zsout” _2:93'4 0 0 o0 D* X3
_2:94,1 _2:94,2 _2:94,3 I+ z:s,out4 X4
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2 P P @,

axa p2 |P2| _ _ paxa |P2 6x1 61T | P2 — T _ P2
D** B 0s| = A 04 + x> (VET) 04 X (vZp)" —A) 04
2 Ps P4 P4

Note that the expression x®* (vE>")T creates a matrix, and the net result of its
operation on the four-element flux is the scalar dot product of VX times the flux vector.
This scalar is then multiplied by the the vector ¥.

The expression that we have here is a generalized eigen value problem:
ANv = Mv

Here A's are the eigenvalues, (in our case B?) and eigenvectors are v's are normalized
flux vectors. For our case we will take only the smallest eigenvalue, as the buckling, and
its associated eigenvector, as the flux vector. The buckling will be the smallest real
positive eigenvalue for this equation. The values in the flux vector will give the relative
amplitudes of the fluxes in each group. The overall values of these fluxes will then be
determined by the power level. With only the thermal group being assumed to create
fission here, the power will set the thermal group flux.

Many program environments can solve this directly. For example in MATLAB we can
write [V,D] = eig(M,N) where V is a matrix of the right eigenvectors, and the matrix D
has a diagonal consisting of the eigenvalues. We may also write this as [V,D]

= eig(N\M).

The vector v (that corresponds with our buckling) when normalized will be the relative
amplitudes of the group fluxes.

The side of the cube will then be L = +/3 m/vB2. This the case because the buckling for
a rectangular solid is:

Vs Vs T
B? = (L—)Z + (L—)Z + (L—)Z
x B% z

This is true because we have the following:

0%F(x,y,z) 0%F(x,y,2) N 0°F(x,y,2) _

_R2
oxz T 0y? 222 BFxy2)

L
all equal to one. For a cube the sides will all have equal length.

2 2 2
This will be true only if B? = [”E—m] + [E] + [;—p] For the lowest mode we {m, n, p}
x y z

When we make this calculation, we get L = 77 cm. This number would be off because
we are doing a four-group solution which fails to do justice to the problem, particularly in
the resonance absorption region, we also have assumed that the flux goes to zero at the
edges of the cube. This would be closer to correct a few centimeters outside the cube.
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ComputeCriticalCubeFourGroup()
William Locke
October 4, 2025

Make a four—energy group estimation of the size
of a homogeneous cubic reactor with typical four
group parameters that are only examples of values.
They do not represent any real reactor.

0 o o P o o o° o°

function ComputeCriticalCubeFourGroup()

D = [1.40; 0.90; 0.55; 0.30];
Chi = [0.98; 0.02; 0.00; 0.00];
nuSigmaf = [8.00e-3; 8.42e-4; 1.214e-2; 1.328e-1];

Sigma_a= [3.714e-3; 2.170e-3; 2.369e-2; 8.379%e-2];
% Scatter into groups, self-scattering is removed.

InScattering = [ 0, O, 0, 0;
0.0243, 0, 0, 0;
0, 0.0628, 0, 0;
Q, 0, 0.0570, 01;

This line sums the off-diagonal elements

one column at a time. This gives the
scattering removal cross section for each
group.

SigmaScatteringRemoval = sum(InScattering, 1).';
Sigma_r = Sigma_a+SigmaScatteringRemoval;

A = diag(Sigma_r) - InScattering ;

o o° of o°

% ———— Generalized eigen build ——-

M = Chix(nuSigmaf.') -A;

N = diag(D);

B2Set = eig(N\M);

% Select the real part of values

% that are positive and nearly real.

B2Set = B2Set(real(B2Set)>0);

B2Set = B2Set(abs(imag(B2Set)) < 1.0e-10);
B2Set = real(B2Set);

% Now pick the minimum value for the remaining group.

B2 = min(B2Set);

L = pixsqrt(3)/sqrt(B2);

fprintf('Critical side L = %.3f cm\n', L);
end
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Note 5. Reactivity

There are two views of the concept of reactivity, one which evaluates k¢ rand defines
reactivity as p = 1 — 1/k,sr. The other view is formed by the first order perturbation

theory method used in deriving the reactor kinetics equation. For reactivities in normal

operational ranges, these two methods produce equivalent results. For example, the

tables below perturb the fission neutrons, the absorption cross section and the side length
individually to measure the two reactivity computations.

fwithky,=1 1.0005vX, 1.0005%Z, 1.0005L
K Method +33.73 pcm -33.15 pcm +28.07 pcm
Perturbation 33.75 pcm -33.16 pcm 28.09 pcm
Method

fwithk,=1 1.01vZ, 1.01%, 1.01L
K Method +670.39 pcm -661.03 pcm +552.89 pcm
Perturbation 674.91 pcm -663.14 pcm 561.86 pcm
Method

fwithk,=1 0.95v%f 0.95%, 0.95L
K Method -3492.41 pcm +3369.50 pcm -3054.37 pcm
Perturbation -3374.56 pcm 3315.69 pcm -2809.28 pcm
Method
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K Method

Or

D = Diffusion coefficients (diagonal matrix)

BZ = geometric buckling for homogeneous shape

R = diag(z + Zout) _ SOff Diagonal
a N

In—Scattering

A = Leakage + Absorption + Out-scatter

A = DB2 +R

F = )((vZf)T

Fo=kAp © A"'Fo = kro

Perturbation method

The expression Sk—kis very nearly the reactivity when k isnearly 1. p =1 — 1/ksf so

(@N)7(8F — koSA)¢
(pN)TFg

Sk/k =

§p = 5k/k? ~ Sk /k

Review of the derivation of the first order perturbation equation

1

Fo = kAg

\S)

FTot = kAT @f

F - F + 6F, A—- A+ 6A,

- @p+do, k- k+6k

(F+30F)(@+6¢@p)=(k+6k)(A+64)(@+6¢)

FéS o+ 0Fp =kASp + kbAp + kA @

(N)TF = k(pNTA - (eN)T(F—kA) =0

Sk = ()" (6F —ksA) /(N Ap)

Ap=1/kF ¢

— O (A[NN N | |W

Sk _ (N (6F — k6A)g
k (N TFo)

So, this resulted in our equation for reactivity in terms of a fractional differential in k. It

is this value that approximates p = 1 — p !

as we have shown above.

eff
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Note 6. Derivation of the Loop Temperature Related Equations

Derivation of the expression for e4¢

A= [—1/Tr 1/z, ]

1/t —1/7g
A — [_1/TT 1/TT ]
1/t —1/14
Let Vv = :_i and Teff = %
Then A, its | , _ 1 [—V V] 0, -Vrers} |y = [1 v
eigenvalues v+ 1DHLT 1 1 1
and its
modal 1 V]
matrix are: M1 = =1 1
v+1

el =M [0 e—t9feff] M~

1 [Ve—f/feff +1 v— Ve—f/feff]

T D1 — e eyt e-ters
1 _
et = ot 1)([% z] +ermen [V 7))
Add and 1 _ . —
subtrzgt et = 1)([% ot 1Y, -a-ermen [T
£ ]

_ t
e At — [1 0 _ (1 —e Teff) [ v -V
0 1" wrD -1 1

=1+ 7,(1— e /"ern)A
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Derivation of the Loop Temperature Equation e4tK

We have the following equations:

T = [Th] A= [_1/Tr 1/Tr ] &
TC 1/Ts _1/Ts B = Cr
_ &
o z
dT t
T AT + B T(t) = e?'T, + eAtf e~ x B dt'
0

The matrix A has eigenvalues {0, %} and a modal matrix using the modal matrix and
eff

eigenvalues of A matrix we find the following:

t t
e’ =T+ 7p(1—e™/NA K= f e A x B dt’
0

+A

t

The following identities hold:

-t t
eAtK = tTeffeAtUB - [I + Teff(l - ereff)A]Tgff (ereff - 1) AB

-t t
eMK = tT,pre " UB — [(I 4 ToppA)A — Toppe N A?B]TZ (e’eff - 1)

— _t [+, A)A = 0
eK = tTorre *UB — (~Tepre™/M)A’Blreyy (ereff - 1> Tt

i TerpA? = —A
eAK = tT,;e M UB — 1%, (1 - efeff)AB o

T -t
SoT(6) = e ([Tﬂ + ”efoB) - Tors (1 - et@ff)f‘lB
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