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Introduction	
	

In	class,	we	discussed	several	methods	used	in	modern	reactor	design	
calculation	for	the	computation	of	space-time	kinetics.		These	methods	are	
complex	and	usually	require	a	great	deal	of	data	for:	cross-sections,	material	
composition,	thermal	hydraulic	behavior,	and	mechanical	design.		This	paper	
provides	a	simple	heuristic	approach	for	observing	phenomena	which	should	
be	approachable,	and	which	should	allow	the	interested	student	to	
experiment	further.		
	
We	set	up	two	identical	reactors	and	provide	a	pathway	“pipe”	for	neutrons	to	
flow	between	them.		Each	reactor	is	treated	as	a	point	from	a	kinetics	
perspective.	The	flow	of	neutrons	between	the	two	reactors	is	taken	as	the	
difference	between	the	neutron	densities	(P)	in	the	two	reactors	times	a	
constant	we	call	“g”	–	a	pipe	size.		Computationally,	we	create	a	single	system	
of	two	sets	of	six	group	reactor	kinetics	equations	coupled	only	by	the	
difference	in	the	neutron	densities	times	g.	This	paper	does	not	address	the	
actual	physics	related	to	the	values	for	this	constant.			
	
First,	we	build	a	concept	for	steady	state	in	this	system.	Then	we	consider	
low-power	operations,	and	normal	temperature	feedback	operations.	Finally,	
we	will	look	at	xenon	oscillation	which	may	leads	to	the	shifting	of	power	
between	the	two	reactors	in	a	damped	or	steady	fashion.	
	
This	presentation	explains	coupling	of	only	two	reactor	systems	for	simplicity.		
The	approach	could	easily	be	extended	to	a	larger	system.		Also,	where	
temperature	is	considered,	the	reactors	here	are	placed	in	parallel	in	the	
coolant	flow.		
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Basic	Equations	
	

	 	

	 	
	

Steady	State	
	
The	coupling	term	with	“g”	in	these	equations	result	in	a	family	of	steady	state	
possibilities	other	than	only	the	zero-reactivity	case	of	the	decoupled	
equations.		For	example,	if	Reactor	1	is	super	critical	and	Reactor	2	is	
subcritical,	there	will	be	a	power	level	ratio	where	the	flow	of	neutrons	from	
Reactor	1	will	make	up	for	the	losses	in	the	fission	chain	in	Reactor	2,	allowing	
a	steady	state	P1/P2	other	than	one.		This	is	similar	in	concept	to	a	real	reactor	
with	an	un-rodded	and	a	rodded	region.		Neutrons	in	the	rodded	region	flow	
to	the	un-rodded	region	maintaining	a	steady	state	among	the	two.		
	
The	steady	state	for	our	problem	will	be	governed	by	the	following	equations:	
	

	 	

	 		
	

	 𝑃!𝜌! + Λ𝑔(𝑃" − 𝑃!) = 0	
	 𝑃"𝜌" + Λ𝑔(𝑃! − 𝑃") = 0	

	
The	positive	reactivities	need	to	be	less	than	or	equal	to	Λg	for	a	steady	state	
to	exist.			
	
As	an	example,	if	the	product	 	is	0.1	and	the	Reactor	1	reactivity	is	500	pcm,	
a	steady	state	would	exist	if	the	Reactor	2	is	subcritical	with	a	reactivity	of	-
500.16	pcm	and	the	ratio	P1/P2	is	1.05.	Likewise,	if	Reactor	1	had	a	reactivity	
of	100pcm,	the	Reactor	2	reactivity	would	be	-100pcm	and	the	power	ratio	
would	be	1.01.		The	reactivity	expressions	are	nearly	symmetric	about	the	
zero	if	the	reactivities	are	small	relative	to	Λ𝑔.		If	the	Reactor	2	were	a	
medium	with	Keff		approaching	zero,	𝜌! 	⟹ −	∞,		Reactor	1	reactivity	would	
need	to	be	 for	a	steady	state.		At	that	value,	Reactor	1	would	have	adequate	
neutron	multiplication	to	sustain	the	loss	g	times	P1	getting	nothing	back	from	
Reactor	2.		P2	would	be	zero.	
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It	is	worth	noting	that,	if	the	pair	of	reactors	starts	in	an	initial	steady	state	
and	is	then	perturbed	in	some	fashion,	the	pair	may	settle	at	another	point	on	
the	steady	state	curve	not	winding	up	where	they	started.			
	
It	is	also	important	to	recognize	that	this	presentation	is	for	illustration	only.		
The	actual	value	of	a	local	flux	will	impact	reactivity	in	a	way	that	requires	a	
much	more	complex	computation,	and	a	will	provide	radically	different	
results	in	some	circumstances.			
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System	Equations	
	
The	dynamics	of	this	system	without	temperature	feedback	may	be	shown	as:	
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𝐺 = (𝐼 − 𝐴Δt)*!	
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Chosen	to	make	
delta	T	equate	to	
percent	power.	

𝑋+ = 𝐺(𝑋+*! +𝐵Δ𝑡)	
	

Note	if	reactivity	is	changing	G	is	not	constant	so	
it	must	be	recomputed	on	a	stepwise	basis.	If	it	is	
constant,	it	may	be	computed	only	once	prior	to	
the	iteration.	

	
	
This	solution	method	may	be	used	with	the	expected	results	on	a	64bit	
computer.		Understand	however	that	from	a	numerical	standpoint	this	
calculation	is	most	demanding.		The	eigenvalues	of	the	A	matrix	with	the	
temperature	terms	included	vary	from	zero	to	minus	ninety-six	inverse	
seconds.		This	spectral	radius	is	large.		Significant	improvement	in	the	
numerical	problem	is	gained	using	the	prompt	jump	assumption	in	cases	of	
small	reactivity,	Λ 67

68
≈ 0.		That	method	adds	complexity	to	the	A	matrix	and	
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related	computations.		The	method	is	discussed	in	the	additional	notes	at	the	
end	of	this	document.		Also,	a	more	complicated		𝐺 = 	?𝐼 − ,-.

"
@
*!
(𝐼 + 𝐴Δt/2)		would	

improve	accuracy.	
	
Finally,	for	a	xenon	calculation,	a	quasi-static	method	assumes	that	the	
neutron	kinetics	aspects	of	the	problem	are	forever	in	steady	state.	This	also	
produces	excellent	results	because	the	xenon	variations	happen	over	many	
hours.		This	approach	is	also	described	in	the	notes	at	the	end	of	this	paper.	
	
	
	
Low	Power	Operation	
	
The	system	matrix	shown	above	(without	the	temperature	feedback)	will	
have	entirely	real	eigenvalues	with	a	positive	eigenvalue	for	each	reactor	with	
a	positive	reactivity.		If	only	one	reactor	has	a	positive	reactivity	there	will	be	
only	one	positive	eigenvalue.		If	both	are	positive	with	two	positive	
eigenvalues,	in	time	the	entire	system	will	appear	to	have	a	single	stable	
period.		The	following	plot	shows	the	maximum	eigenvalue	for	this	system	as	
a	function	of	the	reactivity	in	Reactor	1,	with	a	range	of	values	for	the	
coupling,	g,	and	for	several	different	values	of	reactivity	in	Reactor	2.	The	
maximum	eigenvalue	will	become	the	stable	period	with	positive	reactivities.	
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Maximum		Eigenvalue	Plot	
	

	
	
This	plot	shows	the	impact	of	the	sharing	of	neutrons	as	a	function	of	g.		If	
Reactor	2	has	zero	reactivity,	the	largest	eigenvalue	will	drop	for	high	
reactivities	in	Reactor	1	as	g	increases	–	neutrons	are	flowing	from	Reactor	1	
to	Reactor	2.	In	the	case	where	Reactor	2	has	a	high	positive	reactivity,	the	
system	will	have	a	strong	positive	eigenvalue	even	when	the	Reactor	1	has	
zero	reactivity.	
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The	Prompt	Jump	
	
A	single	reactor,	non-coupled,	which	is	initially	critical	and	provided	a	reactivity	step,	has	a	
prompt	jump	given	by	Poβ/(β-ρ).		This	is	known	as	the	prompt	jump	equation.		With	the	
coupled	reactor	pair,	a	reactivity	insertion	in	one	of	the	reactors	will	also	cause	a	prompt	
jump	but	calculation	of	its	size	is	more	complex	because	some	of	the	neutrons	are	escaping	
to	the	other	reactor	as	the	prompt	neutron	equilibrium	is	being	established.		We	consider	
the	special	case	with	an	initial	condition	that	both	reactors	have	the	same	initial	power	
level	Po	and	both	have	a	zero	reactivity.		Insert	a	reactivity,	ρ,	into	Reactor	1.		In	that	case	
the	jump	will	be	given	for	both	reactors	as	follows:	
	

	 	
Step	in	Reactor	1	only	 P10	=	P20	=	P0			
	
The	plot	below	demonstrates	a	step	into	reactor	one	of	0.6β,	the	power	in	both	reactors	
responds	as	predicted	(g	=	20,	Λ	=	2.6	10-4	sec):	
	

Power	and	Reactivity	vs.	Time	for	a	Reactivity	Step	
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The	next	plot	demonstrates	the	behavior	in	the	system	if	both	reactors	are	
given	a	step:	Reactor	1	is	given	a	step	of	+0.6β	and	Reactor	2	is	given	a	step	of	
-2.0β.		The	calculation	of	the	prompt	jump	in	this	case	is	more	complicated	
than	given	by	the	equations	on	the	last	page.	(g	=	20,	Λ	=	2.6	10-4	sec)	
	

Power	and	Reactivity	vs.	Time	for	a	Double	Reactivity	Step	
	

	 	
	
These	plots	are	particularly	interesting	because	they	demonstrate	that	while	
Reactor	2	initially	appears	to	be	shutdown,	there	is	adequate	excess	capability	
in	Reactor	1	to	drive	the	power	up	over	time	in	both	reactors.		The	calculated	
final	startup	rate	for	each	of	the	two	reactors	is	0.05	DPM	(20	minutes	per	
decade).		The	Reactor	1	reactivity	value	is	0.6β,	a	significant	positive	reactivity	
normally	leading	to	a	large	startup	rate.		The	other	reactor,	with	a	reactivity	of	
-2.0β,	represents	a	significant	drag	on	the	system.	The	combination	yields	the	
low	startup	rate.	
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Power	Operations	(Temperature	Feedback)	
	
With	temperature	feedback	incorporated	into	this	system,	improved	
coordination	is	obtained.	The	transient	below	is	started	with	the	initial	
powers	forced	apart	(70%	and	30%).	The	temperature	feedback	draws	them	
together.		Once	that	happens,	(at	100	sec),	reactor	1	has	a	negative	reactivity	
inserted	equal	to	-0.5𝛽.		We	see	Reactor	2	maneuver	to	pick	up	the	load	and	
carry	on	alone.		The	Steam	Demand	remains	100%.		The	temperature	in	
reactor	1	is	dropped	by	18°F	amounting	to	a	reactivity	increase	of	about	0.3	β.	
The	flow	of	neutrons	out	of	Reactor	2	to	Reactor	1	accounts	for	an	apparent	
reactivity	drop	in	reactor	2	compensated	for	by	a	temperature	drop	of	8.9°F.		
In	the	end	𝑃9𝜌9 + 𝑃!𝜌! ≈ 0.	The	fuel	reactivity	effects	are	not	included	here.		
	
Note	that	if	two	reactors	are	in	steady	state	and	then	get	joined	by	a	coupling	
factor	g,	there	will	be	a	prompt	jump	or	drop	among	the	pair	as	shown	here.		
After	the	jump	the	powers	will	be	as	follows:	
	

𝑃9 =
(𝑃:9 + 𝑃:!)𝑔Λ + 𝑃:9𝛽

𝛽 + 2𝑔Λ
	

𝑃! = 𝑃;< − 𝑃9	

P1	=	60.16	%	
	

P2	=			39.84	%	

When	the	reactors	are	first	joined,	they	will	exhibit	an	initial	startup	rate	in	
each	reactor	as	follows.	This	is	fictitious	because	it	relates	to	a	sudden	
connection	between	two	reactors	which	is	non-physical.	
	
	
𝑆𝑈𝑅9 = 26.06𝑑𝑝𝑚

− 𝑠𝑒𝑐
𝑔(𝑃:! − 𝑃:9)

𝑃:9
	 𝑆𝑈𝑅9 = −149	𝑑𝑝𝑚	

𝑆𝑈𝑅! = 26.06𝑑𝑝𝑚

− 𝑠𝑒𝑐
𝑔(𝑃:9 − 𝑃:!)

𝑃:!
	 𝑆𝑈𝑅! = 347	𝑑𝑝𝑚	
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Incorporation	of	Xenon	
	
We	will	now	modify	our	problem	to	track	Xenon	separately	in	each	reactor.	We	previously	
developed	the	following	constants	and	equations:		
	
I-135	fission	yield	 	 5.7%	
Xe-135	fission	yield	 	 0.3%	
I-135	decay	constant	(6.7	hour	t1/2)	 	 2.87e-05	sec-1	
Xe-135	decay	constant	(9.2	hour	t1/2)	 	 2.09e-05	sec-1	

Full	Power	Burnout	Factor	 ,	the	value	of	
	varies	with	core	life	as	the	flux	changes	for	a	

particular	power.	

	 7.34e-05	sec-1	

Power	Constant	based	on	a	Full	Power	Equilibrium	
Xe	Reactivity	of	-2900	pcm	(Based	on	SNUPS	
Reactors).	

K	 -4.56	pcm-sec-1	

	

	 	
𝑁#$
%& =	

(𝛾#$ + 𝛾')𝑝𝐾
𝜆#$ + 𝑝𝑅()*

		 𝑝 = 𝑃/100	

	 	
	

	
	

	
	

	
The	simple	form	of	G	here	is	
taken	because	the	half-lives	
associated	with	Xe	and	I	are	
much	longer	than	the	time	
step	being	used	for	the	
kinetics.	
	
	The	calculation	is	performed	for	several	steps	with	the	reactor	kinetics	equations	and	the	
resulting	transient	temperature.	Then	the	xenon	and	iodine	concentrations	are	found.		The	
new	xenon	reactivity	information	is	used	to	update	the	kinetics	matrix	for	the	next	kinetics	
steps.		Both	Xenon	and	kinetics	(prompt	jump	approximation)	propagation	matrixes	are	
being	recalculated	for	each	inner	or	outer	step.			
	
Oscillation	is	setup	by	demanding	100%	steam	flow	and	misadjusting	the	initial	conditions.		
Reactor	1	is	started	at	a	steady	state	55%	power	and	equilibrium	xenon.		Reactor	2	is	
likewise	started	at	45%	power	and	equilibrium	xenon.		The	reactors	are	then	connected	
with	g	at	various	values.		The	plots	on	the	next	three	pages	show	first	a	case	where	the	
value	of	g	=	10.	This	results	in	a	strong	sustained	oscillation.		The	subsequent	plots	show	
the	results	with	larger	values	of	g.	
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Xenon	Oscillations	
	
The	purpose	of	this	coupled	reactor	exercise	has	been	to	explore	some	space-time	concepts	
without	a	great	deal	of	detailed	mathematics	and	computer	time.		The	ideas	presented	here	
are	like	what	are	found	in	practice,	but	the	detail	has	been	passed	over	for	the	purpose	of	
instruction.		These	examples	assume	high	enrichment	with	𝛼+ = 0.	Another	set	below	show	
the	results	including	𝛼+ 	not	equal	to	zero.	
	

Strong	Xenon	Oscillations	between	Reactor	1	and	Reactor	2	
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Damped	Xenon	Oscillations	between	Reactor	1	and	Reactor	2	
	

	
	
	 	



	 14	

Strongly	Damped	Xenon	Oscillations	between	Reactor	1	and	Reactor	2	
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The	amount	of	oscillation	depends	on	the	percent	steam	flow	as	well	as	the	coupling	
constant	g.		This	is	true	whether	the	fuel	temperature	feedback	(power	reactivity)	is	
included	in	the	computation	or	not.		The	following	four	cases	do	include	the	power	
reactivity	and	they	appear	in	increasing	order	of	steam	flow.	The	power	reactivity	does	
provide	significant	damping,	so	a	smaller	g	is	required	in	that	case	to	see	the	oscillations.	
	

	 	

	 	
		
Methods	used	for	computing	these	curves	with	the	inclusion	of	the	power	reactivity	are	
discussed	in	the	notes	provided	below.	
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Additional	Notes:	
	

1. The	One-delayed	neutron	group	coupled	reactor	period	equation:	
	

	
	
Derived	by	assuming	a	stable	period	for	the	system,	,2

,̇2
= ,3

,̇3
= 𝑇and	P2	=	K	P1	.		This	

will	only	make	sense	once	the	stable	period	is	established.		The	square	root	term	
results	from	a	quadratic	solution.		Care	must	be	taken	to	select	the	correct	sign.		In	
most	cases	selection	is	trivial	but	in	some	cases	it	may	not	be	trivial.	
	
This	equation	suffers	the	usual	ills	of	the	one	delayed	group	model.		𝜆$..	is	a	
function	of	the	reactor	period	and	hence	the	estimate	needs	its	own	answer	to	be	
accurate.	
	

2. Generalized	Prompt	Jump	Expression:	
	

	

	

In	these	expressions	P01	and	P02	are	initial	steady	state	values	based	on	the	initial	
reactivities	in	the	two	reactors.		The	expression	assumes	that	the	reactivities	ρ1	and	
ρ2	are	inserted	at	the	same	time	in	Reactor	1	and	Reactor	2.	
	
Given	a	steady	state	P01	and	an	initial	reactivity	𝜌!/,	the	initial	power	and	reactivity	
in	the	other	reactor	are	given	by:	
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3. Calculation	using	Prompt	Jump	Assumption	without	fuel	feedback	from	𝛼+ .	
	
This	method	assumes	that	the	governing	equations	may	be	taken	as	the	following:	
	

0 = 	𝑃"(𝛽 − 𝜌") + Λ𝐾" + Λ𝑔(𝑃/ − 𝑃")	
𝐾" =C𝜆4𝐶"4

5

46"

	
𝑑𝐶"4
𝑑𝑡 = 	

𝛽4𝑃"
Λ − 𝜆4𝐶"4 	

0 = 	𝑃/(𝛽 − 𝜌/) + Λ𝐾/ + Λ𝑔(𝑃" − 𝑃/)	
𝐾/ =C𝜆4𝐶/4

5

46"

	
𝑑𝐶/4
𝑑𝑡 = 	

𝛽4𝑃/
Λ − 𝜆4𝐶/4 	

The	approach	we	will	take	is	have	the	differential	equation	solve	for	the	precursor	
concentrations	in	both	reactors	as	well	as	the𝑇0!, 𝑇0", 𝑎𝑛𝑑	𝑇1 .		We	will	then	compute	
the	power	from	these	precursor	concentrations	as	we	did	in	the	usual	prompt	jump	
approximation	for	a	single	reactor:	𝑃 = 2∑ 47577

678
	

	
Solving	the	above	equations	for	the	power	in	terms	of	the	precursor	sums	yields	the	
following	assuming	𝛼+ 	is	taken	as	zero.	

𝑃 = E𝑃"𝑃/
F = Γ EΛ𝐾"Λ𝐾/

F	 Γ =
E𝛽 − 𝜌/ + Λ𝑔 Λ𝑔

Λ𝑔 𝛽 − 𝜌" + Λ𝑔
F

(𝛽 − 𝜌/ + Λ𝑔)(𝛽 − 𝜌" + Λ𝑔) − (Λ𝑔)/
	

𝑑𝑇!"

𝑑𝑡 =
(𝑇# − 𝑇!")

𝜏𝑅
+ 𝑃"/𝐶$%&#'()	

𝑑𝑇!/

𝑑𝑡 =
(𝑇# − 𝑇!/)

𝜏𝑅
+ 𝑃//𝐶$%&#'()	

𝑑𝑇#
𝑑𝑡 =

𝑇!" + 𝑇!" − 2𝑇#
𝜏 −	𝑃01/𝐶	 	

	
Using	this,	the	system	matrix	becomes:	
	

𝐴𝑚 =	
C

C

𝛽!𝜆! 𝛽!𝜆" 𝛽!𝜆# 𝛽!𝜆$ 𝛽!𝜆% 𝛽!𝜆&
𝛽"𝜆! 𝛽"𝜆" 𝛽"𝜆# 𝛽"𝜆$ 𝛽"𝜆% 𝛽"𝜆&
𝛽#𝜆! 𝛽#𝜆" 𝛽#𝜆# 𝛽#𝜆$ 𝛽#𝜆% 𝛽#𝜆&
𝛽$𝜆! 𝛽$𝜆" 𝛽$𝜆# 𝛽$𝜆$ 𝛽$𝜆% 𝛽$𝜆&
𝛽%𝜆! 𝛽%𝜆" 𝛽%𝜆# 𝛽%𝜆$ 𝛽%𝜆% 𝛽%𝜆&
𝛽&𝜆! 𝛽&𝜆" 𝛽&𝜆# 𝛽&𝜆$ 𝛽&𝜆% 𝛽&𝜆&

C

C
	

	
Note:	This	is	the	tensor	outer	product	𝛽⃗ ⊗ 𝜆.	
	

𝐿 =	

⎣
⎢
⎢
⎢
⎢
⎡
𝜆! 0 0 0 0 0
0 𝜆" 0 0 0 0
0 0 𝜆# 0 0 0
0 0 0 𝜆$ 0 0
0 0 0 0 𝜆% 0
0 0 0 0 0 𝜆&⎦

⎥
⎥
⎥
⎥
⎤

	

	

𝐴!%/!% =	

⎣
⎢
⎢
⎢
⎡
Γ!!𝐴𝑚 − 𝐿 Γ!"𝐴𝑚 0 0 0
Γ"!𝐴𝑚 Γ""𝐴𝑚 − 𝐿 0 0 0

ΛΓ!!𝐿𝑚/𝐶0 ΛΓ"!𝐿𝑚/𝐶0 −1/𝜏0 0 1/𝜏0
ΛΓ!"𝐿𝑚/𝐶0 ΛΓ""𝐿𝑚/𝐶0 0 −1/𝜏0 1/𝜏0

0 0 1/𝜏 1/𝜏 −2/𝜏⎦
⎥
⎥
⎥
⎤

	 𝐿𝑚 = [𝜆! 𝜆" 𝜆# 𝜆$ 𝜆% 𝜆&]	

𝑑𝑋
𝑑𝑡 = 𝐴(𝑋)𝑋 + 𝐵	

𝐵 =	
−𝑃12

𝐶3456	8595(:6;
L0
!$/!

1
M	

	

𝑋!%/! =	 [𝐶!:<!:& 𝐶":<!:&			𝑇'!		𝑇'"		𝑇(]>	

A	is	a	function	of	X	and	its	
history	because	A	is	a	function	
of	the	reactivities.	Hence	this	is	

a	nonlinear	system.	
𝑋𝑜!%/! =	 N

P!)𝛽:<!:&
Λ𝜆:<!:&

P")𝛽:<!:&
Λ𝜆:<!:&

	0	0	0P
>

	

	
The	eigenvalues	of	this	system	range	between	0	and	-3	sec-1	which	is	a	significant	
improvement	over	the	full	kinetics	version	of	the	solution.	



	 18	

	
4. One	Delayed	Group	Prompt	Jump	Approximation	with	Power	Reactivity	
	
The	transient	involved	with	xenon	oscillation	happens	over	many	hours.		This	
means	that	the	startup	rates	associated	with	the	oscillation	is	very	small.		As	such	
𝜆$..	is	nearly	constant	at	a	value	of	0.077	1/sec.		In	this	case	a	single	delayed	group	
may	be	used	to	produce	results	which	are	nearly	identical	to	the	results	found	in	the	
more	complex	calculations.		The	prompt	jump	version	of	the	solution	reduces	to	the	
following	in	that	case:	
	

Γ =
E𝛽 − 𝜌/ + Λ𝑔 Λ𝑔

Λ𝑔 𝛽 − 𝜌" + Λ𝑔
F

(𝛽 − 𝜌/ + Λ𝑔)(𝛽 − 𝜌" + Λ𝑔) − (Λ𝑔)/
	 𝑃 = E𝑃"𝑃/

F = Γ E
Λ𝜆%88𝐶"
Λ𝜆%88𝐶/

F	

𝐴9:"

=	

⎣
⎢
⎢
⎢
⎢
⎡
Γ""𝛽𝜆%88 − 𝜆%88 Γ"/𝛽𝜆%88 0 0 0

Γ/"𝛽𝜆%88 Γ//𝛽𝜆%88 − 𝜆%88 0 0 0
ΛΓ""𝜆%88/𝐶$ Γ/"𝜆%88/𝐶$ −1/𝜏$ 0 1/𝜏$
Γ"/𝜆%88/𝐶$ ΛΓ//𝜆%88/𝐶$ 0 −1/𝜏$ 1/𝜏$

0 0 1/𝜏 1/�� −2/𝜏⎦
⎥
⎥
⎥
⎥
⎤

	

dδT;<=
dt =

P" + P/
C>=?@	B?C?DE@F

−	
PGH

C>=?@	B?C?DE@F
	

𝑑𝑋
𝑑𝑡 = 𝐴(𝑋)𝑋 + 𝐵	

𝐵 =	
−𝑃01

𝐶I%&'	J&K&#4'L
⎣
⎢
⎢
⎢
⎡
0
0
0
0
1⎦
⎥
⎥
⎥
⎤
	

𝑋/:" =	 [𝐶" 𝐶/		𝑇!"		𝑇!/		𝑇#]+	

A	is	a	function	of	X	and	its	
history	because	A	is	a	

function	of	the	reactivities.	
Hence	this	is	a	nonlinear	

system.	

𝑋𝑜"/:"

=	Z
𝑃"M𝛽
Λ𝜆%88

𝑃/M𝛽
Λ𝜆%88

		0		0		0[
+
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5. Power	Solution	with	Prompt	Jump	Assumption	and	fuel	feedback	from	𝛼+ .	

	
This	case	is	more	difficult	than	the	no	fuel	feedback	case.			
	
0 = 	𝑃;(𝜌; + 𝛼<𝑃; − 𝛽) + Λ𝐾; + Λ𝑔(𝑃= − 𝑃;)	

𝐾; =/𝜆>𝐶;>

?

>@;

	
𝑑𝐶;>
𝑑𝑡 = 	

𝛽>𝑃;
Λ − 𝜆>𝐶;> 	𝜌;				Includes	effects	from	temperature	and	

xenon.	
0 = 	𝑃=(𝜌= + 𝛼<𝑃= − 𝛽) + Λ𝐾= + Λ𝑔(𝑃; − 𝑃=)	

𝐾= =/𝜆>𝐶=>

?

>@;

	
𝑑𝐶=>
𝑑𝑡 = 	

𝛽>𝑃=
Λ − 𝜆>𝐶=> 	𝜌=				Includes	effects	from	temperature	and	

xenon.	
	

One	may	solve	these	equations	to	develop	a	fourth	order	polynomial	in	P1	which	
may	be	solved,	or	one	may	use	an	equation	solver	to	solve	for	both	values	directly	
with	an	initial	estimate	being	the	most	recent	value	of	P1	and	P2.			
	
The	polynomial	in	Power	is	as	follows:	
	
𝑎/𝑃!9 + 𝑎!𝑃!:+𝑎"𝑃!"+𝑎:𝑃1+𝑎9	

𝑎/ = 𝛼𝐹3	/Λ2𝑔2	

𝑎! = 2𝛼𝐹2(−Λ𝑔 + 𝜌1 − 𝛽)/Λ2𝑔2	

𝑎" =	𝛼𝐹(2Λ2𝑔2 + 3Λ	𝛽𝑔 − 2Λg𝜌1 − Λg𝜌2 + 2𝐾1𝛼𝐹	Λ + ;𝛽 − 𝜌1<
2
)/Λ2𝑔2	

𝑎: = 𝜌! − 𝛽 − (
;𝛽 − 𝜌1 + Λ𝑔<;	𝐾1𝛼𝐹 + 	𝛽𝑔 − 𝑔𝜌2<

Λ𝑔2
) −

𝐾1𝛼𝐹;𝛽 − 𝜌1 + Λ𝑔<
Λ𝑔2

	

𝑎9 =	Λ𝐾1 + Λ𝐾2 +
𝐾1(𝛽 − 𝜌2 + 𝐾1𝛼𝐹/𝑔)

𝑔
	

𝑃= =	−
1
Λ𝑔 (𝑃;

(𝜌; + 𝛼<𝑃; − 𝛽) + Λ𝐾;
− Λ𝑔(𝑃;)	

Once		𝑃;is	obtained,	find	𝑃=with	this	
equation.	

	
This	polynomial	may	have	four	real	roots.	In	the	cases	observed,	the	root	of	choice	is	
the	largest.		Both	methods	appear	to	work.		The	most	reliable	would	be	the	direct	
solve	method.		The	root	finding	method	is	faster.	
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6. Steady	State	Criteria		
a. The	steady	state	for	the	coupled	reactor	and	steam	plant	system	will	require	the	

following	conditions	to	be	met.	That	said	if	the	system	has	perpetual	xenon	oscillations	
these	conditions	will	never	be	met.:	

	
𝑃! + 𝑃" =	𝑃;<$)=;> 	
𝑇0! =	𝑇1 + 𝑃!𝜏?/𝐶@$)1<A@ 	
𝑇0" =	𝑇1 + 𝑃"𝜏?/𝐶@$)1<A@ 	

𝜌#$! =	
(𝛾#$ + 𝛾')𝑝!𝐾
𝜆#$ + 𝑝!𝑅()*

		 𝑝! = 𝑃!/100	

𝜌#$" =	
(𝛾#$ + 𝛾')𝑝"𝐾
𝜆#$ + 𝑝!𝑅()*

	 𝑝" = 𝑃"/100	

𝜌! =	−𝜌#$!	CDC<C)E + 𝜌#$! + 𝛼F ?
𝑇0! + 𝑇1
2 − 𝑇?$.$@$D1$@ + 𝛼+(𝑃! − 𝑃!/)	

𝜌" =	−𝜌#$"	CDC<C)E + 𝜌#$" + 𝛼F ?
𝑇0" + 𝑇1
2 − 𝑇?$.$@$D1$@ + 𝛼+(𝑃" − 𝑃"/)	

𝑃!𝜌! + 𝑔Λ(𝑃" − 𝑃!) = 0	 𝜌#$
!,"	CDC<C)Eare	the	initial	
equilibrium	xenon	levels	for	
reactor	1	and	2	

𝑃"𝜌" + 𝑔Λ(𝑃! − 𝑃") = 0	 𝑃!/	and	𝑃"/are	the	initial	
powers	in	reactor	one	and	two.	

	
b. These	may	be	directly	solved	by	eliminating	𝑃"	and	then	solving	for	P1	and	Tc	by	

minimizing	the	right-hand	side	of	the	last	two	equations.		With	MATLAB	this	may	be	
done	using	fsolve().	
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7. A	Quasi-Static	method	for	Xenon	Oscillation	Observation	

	
a. We	previously	noted	that	with	the	rate	of	the	xenon	oscillation	is	low	and	the	single	

delayed	group	kinetics	model	performed	as	well	as	the	six-group	solution	method.		A	
direct	computation	of	the	startup	rates	associated	with	these	transients	shows	that	the	
reactor	is	very	near	steady	state.		For	example,	with	an	extremely	decoupled	pair	of	
reactors	(g	=	1)	a	computation	of	the	usual	data	as	well	as	the	startup	rate	yields	the	
following:	

	

	 	
			

The	startup	rate	varies	between	less	than	0.01	dpm	to	-0.025	dpm.			
	
This	result	points	to	an	entirely	different	approach.		Perform	the	xenon	transient	
calculation	assuming	that	the	reactor	kinetics	are	constantly	in	equilibrium.		In	
other	words,	the	steady	state	kinetics	equations	at	the	start	of	this	paper	hold	
always	during	the	transient.	Using	the	steady	state	reactor	powers	at	each	time	step	
to	compute	a	new	xenon	value,	and	then	use	that	new	value	to	compute	new	steady	
state	powers.			
	
We	start	with	equilibrium	Iodine	and	Xenon	values	in	reactors	with	no	connection	
to	each	other,	g	=	0.		For	example,	with	one	reactor	at	55%	and	the	other	at	45%	
power	and	a	total	steam	flow	of	100%.	
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Now	connect	the	two	reactors	with	g	not	equal	zero	and	calculate	the	
resultant	Xenon	reactivities	over	time	following	the	connection.	
	
We	will	use	an	ODE	solver	to	solve	the	following	equations:	
	
[P1	and	P2]	=	Compute	Power	
𝑑𝑁'!

𝑑𝑡 = 	𝛾'𝐾𝑃!/100 − 𝜆'𝑁'!	
𝑑𝑁#$!

𝑑𝑡 = 	𝛾#$𝐾𝑃!/100 + 𝜆'𝑁'! − 𝜆#$𝑁#$! − 𝑅()*𝑃!/100	
𝑑𝑁'"

𝑑𝑡 = 	𝛾'𝐾𝑃"/100 − 𝜆'𝑁'"	
𝑑𝑁#$"

𝑑𝑡 = 	𝛾#$𝐾𝑃"/100 + 𝜆'𝑁'" − 𝜆#$𝑁#$" − 𝑅()*𝑃"/100	
	
Where	“Compute	Power”	uses	the	equations	below.	These	equations	are	best	
solved	numerically.		Equations	numbered	1	and	2	are	solved	together	for	
zero	roots	after	making	the	substitutions	for	the	associated	values	using	the	
rest	of	the	equations.		This	solves	for	P1	(and	TC).		P2	is	computed	from	P1	
using	equation	3.	
		
	

	
	
	
	
	
	
	

	
	
	
b. The	quantities	Inject1	and	Inject2	are	the	reactivities	in	the	reactor	initially	to	

counteract	the	equilibrium	xenon	values.		P10	and	P20	are	the	initial	equilibrium	power	
values.	

c. Once	the	xenon	differential	equations	are	solved	for	a	specified	time	integral,	the	values	
of	P,	Tave,	and	Reactivities,	may	be	obtained	by	using	the	equations	1-7	above	for	each	
reactor	iterating	overall	the	entire	time	interval.	

	
	 	

1	 𝑃!𝜌! + Λ𝑔(𝑃" − 𝑃!) = 0	
2	 𝑃"𝜌" + Λ𝑔(𝑃! − 𝑃") = 0	
3	 𝑃! + 𝑃" = 𝑃;<$)=	
4	 𝜌! = 𝐼𝑛𝑗𝑒𝑐𝑡! + 𝜌#$! + 𝛼F(𝑇HI$! − 𝑇?$.$@$D1$)+𝛼+(𝑃! − 𝑃!/)	
5	 𝜌" = 𝐼𝑛𝑗𝑒𝑐𝑡! + 𝜌#$" + 𝛼F(𝑇HI$" − 𝑇?$.$@$D1$)+𝛼+(𝑃" − 𝑃"/)	
6	 𝑇HI$! = 𝑇5 + 𝑃!𝜏?/(2𝐶?)	
7	 𝑇HI$" = 𝑇5 + 𝑃"𝜏?/(2𝐶?)	
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Quasi-Static	solution	 Six	Group	Prompt	Jump	Assumption	
Method	

	 	

	 	
	


