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Introduction

In class, we discussed several methods used in modern reactor design
calculation for the computation of space-time kinetics. These methods are
complex and usually require a great deal of data for: cross-sections, material
composition, thermal hydraulic behavior, and mechanical design. This paper
provides a simple heuristic approach for observing phenomena which should
be approachable, and which should allow the interested student to
experiment further.

We set up two identical reactors and provide a pathway “pipe” for neutrons to
flow between them. Each reactor is treated as a point from a kinetics
perspective. The flow of neutrons between the two reactors is taken as the
difference between the neutron densities (P) in the two reactors times a
constant we call “g” - a pipe size. Computationally, we create a single system
of two sets of six group reactor kinetics equations coupled only by the
difference in the neutron densities times g. This paper does not address the

actual physics related to the values for this constant.

First, we build a concept for steady state in this system. Then we consider
low-power operations, and normal temperature feedback operations. Finally,
we will look at xenon oscillation which may leads to the shifting of power
between the two reactors in a damped or steady fashion.

This presentation explains coupling of only two reactor systems for simplicity.
The approach could easily be extended to a larger system. Also, where
temperature is considered, the reactors here are placed in parallel in the
coolant flow.



Basic Equations
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The coupling term with “g” in these equations result in a family of steady state
possibilities other than only the zero-reactivity case of the decoupled
equations. For example, if Reactor 1 is super critical and Reactor 2 is
subcritical, there will be a power level ratio where the flow of neutrons from
Reactor 1 will make up for the losses in the fission chain in Reactor 2, allowing
a steady state P1/P2 other than one. This is similar in concept to a real reactor
with an un-rodded and a rodded region. Neutrons in the rodded region flow
to the un-rodded region maintaining a steady state among the two.

The steady state for our problem will be governed by the following equations:
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The positive reactivities need to be less than or equal to Ag for a steady state
to exist.

As an example, if the product A9 is 0.1 and the Reactor 1 reactivity is 500 pcm,
a steady state would exist if the Reactor 2 is subcritical with a reactivity of -
500.16 pcm and the ratio P1/P2is 1.05. Likewise, if Reactor 1 had a reactivity
of 100pcm, the Reactor 2 reactivity would be -100pcm and the power ratio
would be 1.01. The reactivity expressions are nearly symmetric about the
zero if the reactivities are small relative to Ag. If the Reactor 2 were a
medium with Kefr approaching zero, p, = — oo, Reactor 1 reactivity would
need to be Adfor a steady state. At that value, Reactor 1 would have adequate
neutron multiplication to sustain the loss g times P getting nothing back from
Reactor 2. P2 would be zero.



It is worth noting that, if the pair of reactors starts in an initial steady state
and is then perturbed in some fashion, the pair may settle at another point on
the steady state curve not winding up where they started.

It is also important to recognize that this presentation is for illustration only.
The actual value of a local flux will impact reactivity in a way that requires a
much more complex computation, and a will provide radically different
results in some circumstances.



System Equations

The dynamics of this system without temperature feedback may be shown as:
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0 0 0 0 0 0 0 Bs/A 0 0 0 0 0 -4 O 0 0 Ci
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0 0 0 0 0 0 0 0 0o 0 0 0 0 o0 1/t 1/t =2/t 6
Ty
Ty
| T, |
ax =AX+B PG
dt — B1Ps /21
B2Pg /22
Tt (T.—-TYH) B3 PL/AzA
— =ty P /Creactor ~ Creactor = C/2 -y
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the iteration.

This solution method may be used with the expected results on a 64bit
computer. Understand however that from a numerical standpoint this
calculation is most demanding. The eigenvalues of the A matrix with the
temperature terms included vary from zero to minus ninety-six inverse
seconds. This spectral radius is large. Significant improvement in the
numerical problem is gained using the prompt jump assumption in cases of

small reactivity, AZ—IZ ~ (. That method adds complexity to the A matrix and




related computations. The method is discussed in the additional notes at the
end of this document. Also, a more complicated ¢ = (i —%“)_1 (I + AAt/2) would

improve accuracy.

Finally, for a xenon calculation, a quasi-static method assumes that the
neutron Kinetics aspects of the problem are forever in steady state. This also
produces excellent results because the xenon variations happen over many
hours. This approach is also described in the notes at the end of this paper.

Low Power Operation

The system matrix shown above (without the temperature feedback) will
have entirely real eigenvalues with a positive eigenvalue for each reactor with
a positive reactivity. If only one reactor has a positive reactivity there will be
only one positive eigenvalue. If both are positive with two positive
eigenvalues, in time the entire system will appear to have a single stable
period. The following plot shows the maximum eigenvalue for this system as
a function of the reactivity in Reactor 1, with a range of values for the
coupling, g, and for several different values of reactivity in Reactor 2. The
maximum eigenvalue will become the stable period with positive reactivities.



Maximum Eigenvalue Plot
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This plot shows the impact of the sharing of neutrons as a function of g. If
Reactor 2 has zero reactivity, the largest eigenvalue will drop for high
reactivities in Reactor 1 as g increases — neutrons are flowing from Reactor 1
to Reactor 2. In the case where Reactor 2 has a high positive reactivity, the
system will have a strong positive eigenvalue even when the Reactor 1 has
zero reactivity.



The Prompt Jump

A single reactor, non-coupled, which is initially critical and provided a reactivity step, has a
prompt jump given by Po/(-p)- This is known as the prompt jump equation. With the
coupled reactor pair, a reactivity insertion in one of the reactors will also cause a prompt
jump but calculation of its size is more complex because some of the neutrons are escaping
to the other reactor as the prompt neutron equilibrium is being established. We consider
the special case with an initial condition that both reactors have the same initial power
level Poand both have a zero reactivity. Insert a reactivity, p, into Reactor 1. In that case
the jump will be given for both reactors as follows:

p—p_ BB+ p—p_ BB+2A—0)
© B 29N p(B+gA) C B 2gA—0(B+gA)
Step in Reactor 1 only P1o="P20=Po

The plot below demonstrates a step into reactor one of 0.6f3, the power in both reactors
responds as predicted (g =20, A = 2.6 10-*sec):

Power and Reactivity vs. Time for a Reactivity Step
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The next plot demonstrates the behavior in the system if both reactors are
given a step: Reactor 1 is given a step of +0.63 and Reactor 2 is given a step of
-2.0B. The calculation of the prompt jump in this case is more complicated
than given by the equations on the last page. (g = 20, A = 2.6 10-*sec)

Power and Reactivity vs. Time for a Double Reactivity Step
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These plots are particularly interesting because they demonstrate that while
Reactor 2 initially appears to be shutdown, there is adequate excess capability
in Reactor 1 to drive the power up over time in both reactors. The calculated
final startup rate for each of the two reactors is 0.05 DPM (20 minutes per
decade). The Reactor 1 reactivity value is 0.6[3, a significant positive reactivity
normally leading to a large startup rate. The other reactor, with a reactivity of
-2.0[3, represents a significant drag on the system. The combination yields the
low startup rate.



Power Operations (Temperature Feedback)

With temperature feedback incorporated into this system, improved
coordination is obtained. The transient below is started with the initial
powers forced apart (70% and 30%). The temperature feedback draws them
together. Once that happens, (at 100 sec), reactor 1 has a negative reactivity
inserted equal to -0.58. We see Reactor 2 maneuver to pick up the load and
carry on alone. The Steam Demand remains 100%. The temperature in
reactor 1 is dropped by 18°F amounting to a reactivity increase of about 0.3 (3.
The flow of neutrons out of Reactor 2 to Reactor 1 accounts for an apparent
reactivity drop in reactor 2 compensated for by a temperature drop of 8.9°F.
In the end P, p; + P,p, = 0. The fuel reactivity effects are not included here.

Note that if two reactors are in steady state and then get joined by a coupling
factor g, there will be a prompt jump or drop among the pair as shown here.
After the jump the powers will be as follows:

=(P01+P02)9A+P01,3 P, = Psg — Py
1 B+ 2gA
P1=60.16 % P,= 39.84 %

When the reactors are first joined, they will exhibit an initial startup rate in
each reactor as follows. This is fictitious because it relates to a sudden
connection between two reactors which is non-physical.

SUR; = 26.06dpm
Cg(Poz — Pyy) SUR; = —149dpm
Po1

SUR, = 26.06dpm
9(Po1 — Poz) SUR, = 347 dpm
Po;

— Sec



Reactor 1 Power (red) and Reactor 2 Power (blue), g = 10.0
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Incorporation of Xenon

We will now modify our problem to track Xenon separately in each reactor. We previously
developed the following constants and equations:

1-135 fission yield Y 5.7%

Xe-135 fission yield Y xe 0.3%

1-135 decay constant (6.7 hour t1/2) Ar 2.87e-05 sect

Xe-135 decay constant (9.2 hour t1,2) Axe 2.09e-05 sect
Xe 4 100% RMax 7.34e-05 sec!

Full Power Burnout Factor O« Pu , the value of
R™™ varies with core life as the flux changes for a
particular power.

Power Constant based on a Full Power Equilibrium | K -4.56 pcm-sec'!
Xe Reactivity of -2900 pcm (Based on SNUPS
Reactors).
7Xe /11 _AXe - RMMP Xe AXe + pRMax
% =AX+B X= [ N ]
NXE
%:AX,Q+B X, = G(Xk—1+BZ'[;;;])
T
G=(I-Alg)" 1 0
- 1+ A5
The simple form of G here is o /1,2'53,’1 1
taken because the half-lives (1 + TE;:;](/‘(XE +RM”p)) (1 + /112.5351) 1+ Z'[ﬁij](/i;@ _I_RMmp)

associated with Xe and I are
much longer than the time
step being used for the
kinetics.

The calculation is performed for several steps with the reactor kinetics equations and the
resulting transient temperature. Then the xenon and iodine concentrations are found. The
new xenon reactivity information is used to update the kinetics matrix for the next kinetics
steps. Both Xenon and kinetics (prompt jump approximation) propagation matrixes are
being recalculated for each inner or outer step.

Oscillation is setup by demanding 100% steam flow and misadjusting the initial conditions.
Reactor 1 is started at a steady state 55% power and equilibrium xenon. Reactor 2 is
likewise started at 45% power and equilibrium xenon. The reactors are then connected
with g at various values. The plots on the next three pages show first a case where the
value of g = 10. This results in a strong sustained oscillation. The subsequent plots show
the results with larger values of g.
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Xenon Oscillations

The purpose of this coupled reactor exercise has been to explore some space-time concepts
without a great deal of detailed mathematics and computer time. The ideas presented here
are like what are found in practice, but the detail has been passed over for the purpose of
instruction. These examples assume high enrichment with ay = 0. Another set below show
the results including a not equal to zero.

Strong Xenon Oscillations between Reactor 1 and Reactor 2

Power ( Reactor 1 - red and Reactor 2 - blue )
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Damped Xenon Oscillations between Reactor 1 and Reactor 2

Power ( Reactor 1 - red and Reactor 2 - blue )
g=14.0, Steam Flow = 100.0
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Strongly Damped Xenon Oscillations between Reactor 1 and Reactor 2

Power ( Reactor 1 - red and Reactor 2 - blue )
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The amount of oscillation depends on the percent steam flow as well as the coupling
constant g. This is true whether the fuel temperature feedback (power reactivity) is
included in the computation or not. The following four cases do include the power
reactivity and they appear in increasing order of steam flow. The power reactivity does
provide significant damping, so a smaller g is required in that case to see the oscillations.

Power ( Reactor 1 - red and Reactor 2 - blue )

Power ( Reactor 1 - red and Reactor 2 - blue )
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Methods used for computing these curves with the inclusion of the power reactivity are
discussed in the notes provided below.
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Additional Notes:

1. The One-delayed neutron group coupled reactor period equation:

2gA 01— 2gApl/b" 02— 2gA,02/3+p102/Fi‘\/492A2+012_20102+022
2 (gA,01 +gAo,— 0102)

Derived by assuming a stable period for the system, % = % = Tand P> = K P;. This

1 2
will only make sense once the stable period is established. The square root term

results from a quadratic solution. Care must be taken to select the correct sign. In
most cases selection is trivial but in some cases it may not be trivial.

This equation suffers the usual ills of the one delayed group model. A.¢f isa
function of the reactor period and hence the estimate needs its own answer to be
accurate.

2. Generalized Prompt Jump Expression:

(E gA_pZ)PM'i'FgAPoz
(B=0)(B—0:) +gA(B—p1) +gA(B—p5)

P =

(E gA—Pl)PonrﬁgAPm
(B—p01)(B—p0:) +gA(B—p01) +gA(B—p0.)

P, =

In these expressions Po1 and Po2 are initial steady state values based on the initial
reactivities in the two reactors. The expression assumes that the reactivities p; and
pzare inserted at the same time in Reactor 1 and Reactor 2.

Given a steady state Po1 and an initial reactivity p,, the initial power and reactivity
in the other reactor are given by:

Py :Pm(l - pm/g/\)
—Agplo

<
Ag 01 O gA
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3. Calculation using Prompt Jump Assumption without fuel feedback from a.

This method assumes that the governing equations may be taken as the following:

0= P (B—p)+AK +Ag(P, — Py) 6 dCli:ﬁipl_/l_C‘
K, :ZAiCu dt A L

i=1
0= P,(B—p;) +AK; + Ag(P, — P,) 6 dCZizﬁiPZ_A.C.
K, =Zli62i dt A trat

i=1

The approach we will take is have the differential equation solve for the precursor
concentrations in both reactors as well as theT}, T?, and T,. We will then compute

the power from these precursor concentrations as we did in the usual prompt jump
. . . _ A G

approximation for a single reactor: P = e

Solving the above equations for the power in terms of the precursor sums yields the

following assuming ay is taken as zero.

B—p2tAg Ag
P=[£ﬂ=r[ﬁ[1§ﬂ r= Ag B—pitAg
(B —p2+Ag)(B — p1 +Ag) — (Ag)?
dTt  (T.—T}) dT?  (T.—T?)
—= = e + PI/CReactor —= = —< + PZ/CReactor
dt g dt Tg
dT. T} +T}-2T
c_'h h c _ PSG/C

dat T
Using this, the system matrix becomes:

Bl Bilz Bids Bids Bids Bide

BoAi Baly Bods Brds Bods Bale A4 0 0 0 0 0
Am = |BsM Bata Psds Bsdy Bsds fale 0 2, 0 0 0 0
Bsli Bady Badz Bals PBads PBale 1=]% 0 4 0 0 0
Bsti Bsdz Psds PsAs Psds  Psds [0 0 0 24 0 0
Beri Bedz Beds PBsAs Pelds PBels 0 0 0 0 4 ©
0 0 0 0 0 A
Note: This is the tensor outer product[? ® 1.
FllAm_L Flem 0 0 0
FZlAm FzzAm_L 0 0 0
AV%15 — | AT, Lm/Cq ATy Lm/Cr  —1/7g 0 1/7g Im=[4 A A3 A As A
AT, Lm/Cy  ATl,,Lm/Ch 0 —1/1p 1/15
0 0 1/t 1/t -2/t
Z—X=A(X)X+B XY = [Chicr Coizre Th T Tel"
t —Psq o14x1
Ais a function of X and its B = W[ 1
history because A is a function Yol5x1 — PioBi=16 P20'8i=1:6000 T

of the reactivities. Hence this is Micis  Miqg
a nonlinear system.

The eigenvalues of this system range between 0 and -3 sec'! which is a significant
improvement over the full kinetics version of the solution.
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4. One Delayed Group Prompt Jump Approximation with Power Reactivity

The transient involved with xenon oscillation happens over many hours. This
means that the startup rates associated with the oscillation is very small. As such
Aesr is nearly constant at a value of 0.077 1/sec. In this case a single delayed group
may be used to produce results which are nearly identical to the results found in the
more complex calculations. The prompt jump version of the solution reduces to the
following in that case:

B—p:+Ag Ag

)2 A, ¢¢C
e Ag _ B—pithg P=[o| =17
- 2
(B —p; +Ag)(B — p1 + Ag) — (Ag)? eI
A3x1
Ti1BAerr — Aess Ti2Bess 0 0 0 déTpye P +P,
l—‘21.8/1e'ff l—‘22.8/1eff - /Ieff 0 0 0 dt CHeat Capacity
= AF11Aeff/CR FZl/Ieff/CR -1/t 0 1/t _ P
F12/1eff/CR AFZZAeff/CR 0 -1/t 1/74 CHeat capacity
0 0 1/t 1/B8B -2/t
ax
—=AXX +B 0 X =10 G Ty T T
Ais a function of X and its —Pq 0 ot
history because Ais a B = o 0 Xo** .
function of the reactivities. Heat Capacity f _ [PuB PP 000
Hence this is a nonlinear 1 - A,leff Aleff

system.
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5. Power Solution with Prompt Jump Assumption and fuel feedback from a.

This case is more difficult than the no fuel feedback case.

0= Pi(py + apPy — B) + AK, + Ag(P, — Py) o dCli—Bipl—/lC
p1 Includes effects from temperature and K, = Z A;Cy; dt ~ A Lt
Xenon. i=1

0= P(p; +apP, — B) + AK; + Ag(Py — Py) o dCZi_ﬂiPZ_;{C
p, Includes effects from temperature and K, = Z A Cy; dt =~ A 121
Xenon. =1

One may solve these equations to develop a fourth order polynomial in P1 which
may be solved, or one may use an equation solver to solve for both values directly
with an initial estimate being the most recent value of P1 and P2.

The polynomial in Power is as follows:

aoP! + a,P3+a,P?+azP,+a,

ay = ap® /\*g*

ay = 2a;°(—Ag +p, — B)/N'g°

a, = ap(202g? + 3 Bg — 2Agp, — Agp, + 2Kyap A+ (B — p,) )/A%g?
((b’ —p, +Ag)(Kiar + Bg — gpz)) _ Kiar(B—p, + Ag)

a; =p1—B -

Ag? Ag?
Ki(B —p, + Kiar/9)
a4_ - AKl + AKZ + ! 2 1F
N g
P, = — Ao (Py(py + apP; — B) + AK, Once P;is obtained, find P,with this
9 equation.

—Ag(Py)

This polynomial may have four real roots. In the cases observed, the root of choice is
the largest. Both methods appear to work. The most reliable would be the direct
solve method. The root finding method is faster.

Polynomial Value vs P, g =10
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6. Steady State Criteria

a. The steady state for the coupled reactor and steam plant system will require the

following conditions to be met. That said if the system has perpetual xenon oscillations

these conditions will never be met.:

Pl +P2 = PSteamSG
Th1 = TC + PlTR/Creactor
Th2 = TC + PZTR/Creactor
1 _ (Yxe + Y)P1K
¥ Axe + P RM*

(Vxe T Y)DP2K

Pe =
xe Axe + piRMax

1 initial

p1 = —pxe" N+ pxe + aw[
p2 = =Pk + pRe + [

Pips + gA(P, —P;) =0

Pyp; + gA(Py —P;) =0

b. These may be directly solved by eliminating P, and then solving for P1 and T.by
minimizing the right-hand side of the last two equations. With MATLAB this may be

done using fsolve().

pl ES Pl/l()o
pz == P2/100
Th + T,
T - TReference + aF(Pl - PlO)
T? + T,
T - TReference + aF(PZ - PZO)
pyZ Ml are the initial

equilibrium xenon levels for
reactor 1 and 2

P, and P, are the initial
powers in reactor one and two.
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7. A Quasi-Static method for Xenon Oscillation Observation

a. We previously noted that with the rate of the xenon oscillation is low and the single
delayed group kinetics model performed as well as the six-group solution method. A
direct computation of the startup rates associated with these transients shows that the
reactor is very near steady state. For example, with an extremely decoupled pair of
reactors (g = 1) a computation of the usual data as well as the startup rate yields the
following:

Power ( Reactor 1 - red and Reactor 2 - blue ) SUR (Reactor 1 - red, Reactor 2- biue)
g=1.0, Steam Flow =100.0 oo

dpm

50 100 150 20 250 300
Xenon Reactivity

0 50 100 150 200 250 300

Total Reactivity pcm

0 50 100 150 200 250 300

i .OH
Time (Hn) L

The startup rate varies between less than 0.01 dpm to -0.025 dpm.

This result points to an entirely different approach. Perform the xenon transient
calculation assuming that the reactor kinetics are constantly in equilibrium. In
other words, the steady state kinetics equations at the start of this paper hold
always during the transient. Using the steady state reactor powers at each time step
to compute a new xenon value, and then use that new value to compute new steady
state powers.

We start with equilibrium Iodine and Xenon values in reactors with no connection

to each other, g = 0. For example, with one reactor at 55% and the other at 45%
power and a total steam flow of 100%.
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Now connect the two reactors with g not equal zero and calculate the
resultant Xenon reactivities over time following the connection.

We will use an ODE solver to solve the following equations:

[P1 and P2] = Compute Power

N} )
dr yiKP;/100 — A;N;
dN)}e 1 1 Max
dt == ]/XeKP]_/lOO'i'AINI _AXeNXe_R P1/100
NIZ )
dt = )/IKPZ/l()O—AINI
dN)?e 2 2 Max
dt == yXeKP2/100+A’INI _/1X€NX€_R P2/100

Where “Compute Power” uses the equations below. These equations are best
solved numerically. Equations numbered 1 and 2 are solved together for
zero roots after making the substitutions for the associated values using the
rest of the equations. This solves for P1 (and T¢). P2 is computed from P
using equation 3.

Pipy + Ag(P, —P,) =0

Pyp, + Ag(Py —P;) =0

P1+P2 :PSteam

p1 = InjeCtl + p)l(e + aW(TAlve - TReference)-l'aF(Pl - PlO)
P2 = InjeCtl + p)Z(e + aW(TAZve - TReference)+aF(P2 - PZO)
TAlve = TC + PlTR/(ZCR)

TAZve =Tc+ PZTR/(ZCR)

NOY U1 S W

b. The quantities Inject; and Inject; are the reactivities in the reactor initially to
counteract the equilibrium xenon values. P10 and P20 are the initial equilibrium power
values.

c. Once the xenon differential equations are solved for a specified time integral, the values
of P, Tave, and Reactivities, may be obtained by using the equations 1-7 above for each
reactor iterating overall the entire time interval.
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Quasi-Static solution

Quasi-Static Power ( Reactor 1 - red and Reactor 2 - blue )
g=15.0, Steam Flow = 100.0
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Six Group Prompt Jump Assumption
Method

Power ( Reactor 1 - red and Reactor 2 - blue )
g=15.0, Steam Flow = 100.0
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