
 1

Fundamental Kinetics Ideas
William N. Locke, Adjunct Professor

University of Pittsburgh, ME 2101
September 26, 2025

Revision 17

Introduction

This document is provided to serve as class notes for a course in nuclear reactor
kinetics. The purpose of this paper is to start with a point kinetics model and
consider:

1. Review the fission process and other fundamentals.
2. The reactor model with only prompt neutrons.
3. Development of the reactor kinetics equations.
4. Traditional solution methods for the kinetics equations.
5. Matrix methods for solution of the kinetics equations.
6. The prompt jump assumption and related solutions of the kinetics

equation.
7. The one delayed group assumption and the consequences of this

assumption.
8. Ramp additions of reactivity.
9. Startup rate and related equations.
10. Source and reactivity transfer functions.

A point kinetics model is based on assuming that the differential equations
associated with a reactor are separable in space and time. That is, the solutions for
fission rate, flux, and other commodities may be treated as a product of a function
of time multiplied by a function of space. Real reactors will not have this
behavior, but in most cases the choice is a good approximation. In this course, our
interest is the time behavior of reactors.

 2

1. Review The Fission Process

The Fission Process

• The kinetic energy of the fission

fragments is spent within the
metal or ceramic matrix of the
fuel. This is the primary source of
heat in the reactor.

• The total energy released in a
fission is approximately 200 MEV.

• Once the fission fragments lose
their internal excitation energy,
they become known as fission
products.

• The fission products are neutron
rich, and they undergo beta
minus decay. This reduces the
number of neutrons by one while
increasing the number of
protons. These decays have half-
lives ranging from fractions of a
second, to years.

• The beta decay of the fission
products releases both beta and
gamma radiation. This produces
“decay heat”, this decay heat
represents nearly 7% of the total
reactor heat.

• The neutrons that have a high
probability of causing fission
have low energy, on the order of
0.025 EV. The neutrons born in
fission need to be slowed down
in order to cause a subsequent
fission with high probability.

• Note an EV is an “electron-volt”,
the energy gained by an electron
falling through a potential
difference of one volt. An MEV is
a million electron-volts.

• The Low Energy Neutron is absorbed by
the U-235 nucleus; energy is released as
this happens. The energy is initially in the
form of nuclear vibration. When the
nucleus takes a dumbbell shape, the
nuclear forces cannot prevent separation
due to the strong electrostatic forces
repelling the fission fragments.

• The fission fragments lose energy by
emitting neutrons and gamma radiation.

• This process takes about 10-12 sec.
• The fission fragments repel each other

departing with nearly 165 million electon-
volts of kinetic energy.

• Prompt Neutrons and Gammas are
produced directly from the fission. These
neutrons have energies averaging nearly 2
MEV. On the average, about 2.5 prompt
neutrons are born directly in fission.

 3

Neutron Lifecycle

Neutrons are produced in an operating reactor primarily from initial
decay of excited state fission fragments (prompt neutrons). These
neutrons have energies on the order of an MEV. There are also neutrons
that come from the decay of fission products much later. And some
neutrons are derived from other sources. These generally have energies
on the order of tenths of an MEV. If there is to be a large chance of
these neutrons causing fission, they need to be slowed down to energies
that are hundredths an electron volt (EV). So, the kinetic energy of the
neutrons needs to be reduced by a factor of roughly 1.0x10-8. This is
accomplished using collisions with a material (such as water) which
contains a significant amount of hydrogen. At the same time, there is a
chance that neutrons will be adsorbed in materials within the reactor that
do not yield a fission. The neutrons may also leak out of the reactor.
We will study these phenomena in detail in a future lesson. For now,
define Keff, the number of neutrons that follow a cycle divided by the
number of neutrons that start the cycle. We apply the term “cycle” here
loosely as if the system grouped neutrons and passed them through the
process sequentially. This idea is not what happens, but the thought is
useful for understanding the behavior of a reactor.

 4

2. Prompt Neutron Only Model (As if there were no delayed
neutrons)

Examine the dynamic behavior of a point reactor with only prompt
neutrons:

𝑁! − 𝑁" =	𝐾#!!𝑁" −	𝑁"

𝑁! − 𝑁"
Δ𝑡 = 	

(1 − 1
𝐾#!!

*𝐾#!!𝑁"

Δ𝑡

For small Δ𝑡.

$%(')
$'

=)%(')
*

Where generation time, Λ = 	 !"

#!""
 and 𝜌 = 1 − 1/𝐾$%%

If the reactivity is not a function of time the resulting neutron population
is:

Keff Nf

Nf

Nf
Ni

 5

𝑁(𝑡) = 𝑁+𝑒
)'
*

A typical value for the generation time is 5x10-5sec. And a reasonable
reactivity would be 250x10-5. (This number would commonly be written
as 250 pcm.) After one second this would lead to a large value of N(t).

𝑁(1sec) = 	𝑁&𝑒'(&∗*/(= 𝑁&𝑒(& = 𝑁& ∗ 5.2𝑥10'*

This is not acceptable if 250 pcm is a reasonable reactivity. The
reactivity value is typical so a reactor without delayed neutrons would
not be controllable.

3. Delayed Neutron Impact

It is instructive to consider an estimate where we simply modify the
generation time by including the impact of the delayed neutron groups.
This does not lead to correct dynamic behavior, but it demonstrates a
key point related to the effective decay constant. If a radioactive
element has a decay constant, 𝜆		 ,then its mean expected life is 1/𝜆. We
think of the known precursors as existing within groups with similar
decay constants.

Group Half-life (sec) 𝜆, % Fission 𝛽,
1 55.72 0.0124 2.25 0.000215
2 22.72 0.0305 21.8605 0.001424
3 6.22 0.111 19.6899 0.001274
4 2.3 0.301 39.5349 0.002568
5 0.610 1.14 11.472 0.000748
6 0.230 3.01 4.1860 0.000273

The 𝛽, in this table are the fraction of all neutrons born in fission that
are born into the i’th group. The adjusted generation time weighted by
the 𝛽,	could be:

 6

Λ-= The fraction of
the neutrons that
are born prompt
times Λ

The fraction of
neutrons born into
the i’th group times
the mean decay
time of the group
plus Λ

Λ- = (1 − 𝛽)Λ +	∑ 𝛽, <

*
.#
+ Λ= =,/0

,/* Λ +	∑ 𝛽,/,/0
,/* 𝜆, = 0.837𝑠𝑒𝑐

Here we have assumed that a delayed neutron, once born, will have the
same chance as a prompt neutron of slowing down and causing a new
fission. This is not exactly accurate as we will find later. Note: 𝛽 is the
sum of the 𝛽,.

The interesting result here is that while the delayed neutrons are a small
fraction of the total neutrons born in fission, they represent a major
influence on the overall time constant in the system because of their
relatively long lifetimes.

So, with 250 pcm (1 pcm = 1.0x10-5) of reactivity we have:

𝑁(1sec) = 	𝑁&𝑒'(&1*&
$%∗*/&.345 = 𝑁&𝑒&.&'66 = 1.0303	𝑁&

Without developing equations which demonstrate the dynamic behavior
of the reactor we already have a feel for why delayed neutrons are so
important in making reactor control possible. Their relatively long
lifetimes have a significant impact.

We shall now develop a more detailed view of the kinetics of a reactor.

 7

The Effective Delayed Neutron Fraction

The values of the delayed neutron fraction tabulated above are the
fraction of the neutrons born in thermal fission that are born delayed.
These are a property of the fuel itself and are fixed. The parameter that
matters in a thermal reactor is the fraction of thermal neutrons that were
born delayed. This means that not only do the neutrons need to be
created but they also need to be slowed down to thermal energies as do
the prompt neutrons. This introduces a complication.

The prompt neutrons are born with a mean energy of about 2 MEV. The
delayed neutrons are born at many different energies, largely an order of
magnitude less than the prompt neutron birth energy. This means that
delayed neutrons are more likely to successfully thermalize than prompt
neutrons. This effect will cause an increase in the effective value of this
fraction. These new fractions are denoted as 𝛽̅, and 𝛽̅.

For a geometrically small reactor this value tends to be large as the
leakage effects will accentuate the difference in the slowing down
probability. The effect is much less in a large reactor.

Low enrichment cores will also have fuel conversion from U238 to Pu239.
Over time the fuel concentration shifts towards Pu239 while not
eliminating U235 completely. Pu239 has a 𝛽 of approximately 200x10-5 as
compared to 640x10-5 for U235. This tends to drive the 𝛽̅ for the system
down.

A typical large thermal reactor could have a 𝛽̅ ranging from 700x10-5 at
beginning of life down to about 500x10-5 at the end of life. (Data for
AP1000, T.M. Sembiring et al 2018 J. Phys.: Conf. Ser. 962 012030)

 8

 This paper is available at:
https://iopscience.iop.org/article/10.1088/1742-
6596/962/1/012030/pdf

This document uses 𝛽, and 𝛽 throughout rather than the adjusted values.
The kinetics transients and other calculations are done using these
natural fuel values for U235. For the cases where MATLAB programs
are provided it would be a small matter to adjust these values if needed.

In the process of defining the internal kinetics of a reactor we define an
entity called a delayed neutron precursor. This is a fission product
which decays at some point releasing a delayed neutron. Real isotopes
tend to release delayed neutrons with some probability. We make a
distinction here. Precursors are a population that do release a delayed
neutron so the probability that a delayed neutron is released from the
decay of a precursor is one. We use the symbol "𝐶," to represent the
concentration of precursors in the i’th group. And we use the symbol,
“C”, to represent the total concentration of precursors.

We will now build a “cycle model” to provide an intuitive derivation of
the reactor kinetics equations. We start with only the concept of Keff,
delayed neutrons with 𝛽 and 𝛽, and we think of about the numbers of
neutrons as we go around a cycle.

In the future we will look at a much more first principles-based version
of this derivation. The interesting thing is that we will find that our
simple derivation produces the exact result, not a conceptual
approximation.

 9

1. Development of the Reactor Kinetics Equations

Ni = Neutrons starting one generation
Nt = Fictitious number of neutrons after Keff
Nd = Number of neutrons that will be born delayed = 𝛽𝐾$%%𝑁𝑖
S = Number of neutrons from other sources in Δ𝑡.
Np = (1 − 	𝛽)𝐾$%%𝑁,
Ndecay = ∑ 𝜆,	𝐶,	Δ𝑡0

,/*
Nf = (1 − 	𝛽)𝐾$%%𝑁, +	∑ 𝜆,	𝐶,	Δ𝑡0

,/* + 𝑆Δ𝑡
The change in neutron population in one generation is:

𝑁% −𝑁, =	 (1 − 	𝛽)𝐾$%%𝑁, +	∑ 𝜆,	𝐶,	Δ𝑡0

,/* 	+ 𝑆Δ𝑡 −	𝑁,

Keff

Ci

Nt Nd

Nf Ndecay

Np
Ni

SΔ𝑡

 10

So

𝑁% −𝑁,
Δ𝑡

= 	 (1 − 	𝛽)𝐾$%%𝑁, +	H𝜆,	𝐶,	Δ𝑡
0

,/*

+ 𝑆 −	𝑁,

Or

𝑁% −𝑁,
Δ𝑡

= 	
I1 − 1

𝐾$%%
− 	𝛽J𝐾$%%𝑁,

Δ𝑡
+	H𝜆,	𝐶,	 + 𝑆

0

,/*

This becomes for small delta t.

89(")
8"

=	 (<=	>)9(")
?

+	∑ 𝜆,	𝐶,	0
,/* + S

Where Λ = 	 !"

#!""

Similarly

𝑑𝐶,(𝑡)
𝑑𝑡

= 	
𝛽,
Λ
	𝑁(𝑡) −	𝜆,	𝐶,	

Observations:

• These equations represent a group of seven differential equations.

If the reactivity is piecewise constant they may be treated as linear
equations and solved in closed form.

• The quantity 𝜌	 = 	1 − *
#!""

 is the reactivity. It may be arbitrarily

negative. It must be maintained less than 𝛽 for the reactor to be
controllable as may be seen by examining the first reactor kinetics
equation.

 11

• When the reactivity is not constant, these equations are nonlinear
and are often solved using approximation techniques.

§ The Prompt Jump Assumption. (Good assumption): For
small reactivity, the quantity Λ 89(")

8"
 is considered small

enough to ignore. This removes much of the
computational difficulty (stiffness) in the equations
resulting in a reduction of the first kinetics equation to:

 𝑁(𝑡) = 	Λ(∑ 𝜆,	𝐶,	 + 𝑆)/(𝛽 − 	𝜌)0

,/*

This reduces the kinetics problem to solving the six
precursor differential equations.

As long as the reactivity is controlled to be much less
than 𝛽 this is adequate to develop accurate results.

A stiff problem is one where the derivative can have
large erroneous values when the unknown itself is
small.

§ The one delayed group assumption (Very poor
assumption): The six groups of precursors are treated as
one group with a single decay constant. The sum is
reduced to 𝜆$%%𝐶. This approach is used primarily in
teaching environments. It is not helpful in
understanding the precise values of the related
parameters. In any case this assumption reduces the
kinetics problem to a single differential equation
coupled with the prompt jump approximation algebraic
fission rate equation.

 12

2. Traditional Solution Methods for the Reactor Kinetics Equations

Traditional Approach (Without Prompt Jump or one delayed group
assumption)

Assume reactivity is not a function of time (Linear Case) and there are
no external sources of neutrons. For now, set S = 0.

𝑑𝑛(𝑡)
𝑑𝑡

= 	
𝑛(𝑡)(r− b)

L
+Hl,𝐶,(𝑡)

0

,/*

𝑑𝐶,(𝑡)
𝑑𝑡

= 		
𝑛(𝑡)b,
L

−	l,𝐶,(𝑡)

This amounts to seven differential equations in seven function
unknowns. The equations have constant coefficients and are known to
have solutions which will be linear sums of terms.

𝑛(𝑡) = 	H𝑎@𝑒w&"
0

@/&

𝐶, =	H𝑏,@𝑒w&"
0

@/&

The seven {wj= 0:6} are the roots of the characteristic equation:

Let n = aewt and Ci(t) = bi ewt. Recognizing that the derivative of ewt is
just w ewt we see that all the terms with ewt will drop out of the equation
leading to

 13

w𝑎 = 	
𝑎(r− b)

L
+Hl,𝑏,

0

,/*

w𝑏, =		
𝑛(𝑡)b,
L

−	l,𝑏,
Solving the second of these equations for bi and substituting into the first
gives the following form with “a” canceled.

w =	
(r− b)

L
	+ 	

b,l,
L(w+ l,)

	

Now solving for the reactivity, we get:

r	 = 	wL	 +H
wb,

(w	 + 	l,)

0

,/*

This is known as the in-hour equation (inverse-hour), and it has the
following properties:

1. The reactivity is limited by the physics of the system. For example,
there are about 2.5 neutrons created per fission and a fuel
absorption has only approximately 5/6 chance of creating a fission.
So Keff could be no larger than '.(∗(

0
. This alone would bound the

reactivity at 0.52. Realistically other absorption and leakage
would further limit the reactivity. As we have seen, safe reactor
operation must limit reactivity to well below b.

2. There are seven real roots for w and they vary over a large range.
3. If r	 > 0 the equation will have one positive root, 𝜔&. All others

are non-zero and negative. For large positive reactivities much
greater than 𝛽 the asymptotic value of 𝜔& = 	𝜌/Λ.

4. If r	 < 	0	 the equation will have seven negative roots.

 14

5. The most negative eigenvalue is asymptotic to =*
?#!""

. This is on the

order of -1.0x105 sec-1
6. In the positive and negative directions, each eigenvalue is

asymptotic to one of the {𝜆,} except at the ends.

The reference is available at:
http://milproj.dc.umich.edu/pdfs/books/1976_Nuclear%20Reactor%20A
nalysis.pdf

 15

Here are some solutions for w assuming Λ = 50𝜇𝑠𝑒𝑐

r/b 0.0 0.1 0.25 1.0 4.0
w& -0.0000 0.0102 0.0395 6.6280 1161.0
w* -0.0144 -0.0138 -0.0134 -0.0128 -0.012504
w' 0.0682 -0.0628 -0.0548 -0.0380 -0.031206
w4 -0.1950 -0.1877 -0.1764 -0.1376 -0.11367
wA -1.0203 -1.0094 -0.9889 -0.6921 -0.31443
w(-2.8992 -2.8880 -2.8664 -2.2738 -1.1507
w0 -129.4078

-116.5533

-97.2944 -8.0785 -3.0272

r/b	 -0.1 -0.25 -1.0 -10
w&	 -0.0058468 -0.0097112

-0.011986

-0.012423

w*	 -0.01532 -0.017606

-0.024912

-0.029871

w'	 -0.073233 -0.079534

-0.095291

-0.10928

w4	 -0.20185 -0.21115

-0.24199

-0.29042

wA	 -1.0295 -1.0409

-1.0743

-1.1243

w(-2.9085 -2.92

-2.9531

-3.0017

w0	 -142.27 -161.58

-258.2

-1419

Prompt Criticality r/b = 1.0

 16

This has been the traditional approach towards understanding reactor
kinetics. The method requires a constant reactivity so it may only be
used in a region where fission rate does not affect reactivity.

What remains is to determine the 49 coefficients for the exponential
terms in each of the sums.

𝑛(𝑡) = 	H𝑎@𝑒w&"
0

@/&

𝐶, =	H𝑏,@𝑒w&"
0

@/&

This done by matching the initial conditions on n and 𝐶, as well as their
derivatives and is a great deal of work.

Next, we will look at another approach that lends itself more readily to
modern tools such as MATLAB, Python, Mathematica, and so on. The
new method also requires a constant reactivity for now.

 17

3. Matrix Method for solving the Reactor Kinetics Equations

Modern computer programs make manipulation of matrixes and vectors
easy. This includes the computation of eigenvalues and eigenvectors
related to matrixes. This means that a simple method is available for
solving the kinetics equations which allows computation in only a few
lines of programming. For example, MATLAB can be used to perform
this quickly.

The seven reactor kinetics equations may be written as:

dX
dt
= AX + 𝑆

Where:

𝑋(𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑛(𝑡)
𝐶!(𝑡)
𝐶"(𝑡)
𝐶#(𝑡)
𝐶$(𝑡)
𝐶%(𝑡)
𝐶&(𝑡)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜌 − 𝛽
𝛬

𝜆! 𝜆" 𝜆# 𝜆$ 𝜆% 𝜆&
𝛽! 𝛬⁄ −𝜆! 0 0 0 0 0
𝛽" 𝛬⁄ 0 −𝜆" 0 0 0 0
𝛽# 𝛬⁄ 0 0 −𝜆# 0 0 0
𝛽$ 𝛬⁄ 0 0 0 −𝜆$ 0 0
𝛽% 𝛬⁄ 0 0 0 0 −𝜆% 0
𝛽& 𝛬⁄ 0 0 0 0 0 −𝜆&⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑆 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
So
0
0
0
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝑋𝑜

=
𝑛'
Λ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
Λ

𝛽!/𝜆!
𝛽"/𝜆"
𝛽#/𝜆#
𝛽$/𝜆$
𝛽%/𝜆%
𝛽&/𝜆&⎦

⎥
⎥
⎥
⎥
⎥
⎤

So is the source rate and 𝑛' is the initial fission rate.

Assuming the reactivity is constant this equation has a solution using the
integrating factor:	𝑒=BC

𝑋(𝑡) = 𝑒!"𝑋𝑜 + 𝑒!".𝑒#$%(S(t)
%

&

d𝑡'

and

 18

𝑒!" =0(1/𝑖!
(

)*&

)(At))

We will assume the source term S is constant which results in X(t)
being:

𝑋(𝑡) = 𝑒!"𝑋𝑜 + 𝐴#+𝑒!"(1 − 𝑒#!")𝑆 = 𝑒!"𝑋(0) + 𝐴#+(𝑒!" − 𝐼)𝑆

The obstacle here is the computation of the matrix exponential. This
problem can be greatly simplified using diagonalization of A as follows.
Define the eigenvalues and eigenvectors of A as follows:

Det(𝐴 − 𝜔𝐼) = 0 Ae<⃗ &..-./+ = 𝜔&..-𝑒&..-./+

The matrix is 7X7 and there will be seven solutions for omega. There
will be seven eigenvectors E. Formally the solutions for omega could be
real or complex where the complex roots would appear in congregate
pairs. As it happens, the roots to this problem all are real. Likewise, the
eigenvectors are real.	

The key idea here is that a matrix M formed with its columns being the
eigenvectors may be used to form a diagonal form of the A matrix.

𝑀./. = [𝑒&./+ 𝑒+./+ 𝑒0./+ 𝑒1./+ 𝑒2./+ 𝑒3./+ 𝑒-./+]

𝐷 = 𝑀#+AM
and

𝐷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜔& 0 0 0 0 0 0
0 𝜔+ 0 0 0 0 0
0 0 𝜔0 0 0 0 0
0 0 0 𝜔1 0 0 0
0 0 0 0 𝜔2 0 0
0 0 0 0 0 𝜔3 0
0 0 0 0 0 0 𝜔-⎦

⎥
⎥
⎥
⎥
⎥
⎤

The following relationships also hold

 19

𝐴 = MDM#+ 𝐴#+ = MD#+𝑀#+

We can write

𝑒4% =0(1/𝑖!
(

)*&

)(𝑀#+𝐴𝑀𝑡)) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑒
5)% 0 0 0 0 0 0
0 𝑒5*% 0 0 0 0 0
0 0 𝑒5+% 0 0 0 0
0 0 0 𝑒5,% 0 0 0
0 0 0 0 𝑒5-% 0 0
0 0 0 0 0 𝑒5.% 0
0 0 0 0 0 0 𝑒5/%⎦

⎥
⎥
⎥
⎥
⎥
⎤

So, the solutions to the kinetics equations:

𝑋(𝑡) = 𝑒!"𝑋𝑜 + 𝐴#+𝑒!"(1 − 𝑒#!")𝑆 = 𝑒!"𝑋(0) + 𝐴#+(𝑒!" − 𝐼)𝑆

May be rewritten as follows:

𝑋(𝑡) = Me6"𝑀#+𝑋𝑜 + MD#+(𝑒6" − 𝐼)𝑀#+𝑆

Which may be directly computed once the eigenvectors and eigenvalues
are known.

Once we have defined A, X, and S, MATLAB computes D and the M
matrixes with one command. The 𝑒DC matrix, are computed. Finally, X
for any value of t can be found. This gives us the fission rate and all
precursor concentrations for each value of time.

Note that A, M, M-1, D, and D-1 are constant for all steps in the iteration
and need only be computed once. Further note that D-1 may be
computed by inverting the diagonal elements of D. Further, products
such as MD=* and 	𝑀=*𝑆	need	only	be	computed	once.

Software tools such as MATLAB use various mathematical methods,
such as the Pade approximation, to compute the matrix exponential.

 20

This avoids the need to perform the diagonalization explained in this
document. Hence the matrix nay be found simply as ExpAt =
expm(A*t). We will use the diagonalization method because it is
instructive.

Linear System Stability

A linear system defined by

𝑑𝑋!"#

𝑑𝑡
= 𝐴!"!𝑋!"# + 𝐵!"#

is stable if all the eigenvalues of A have negative real parts.
This implies that for any finite B there will be a steady state
value of X given by

𝑋!"#$$ =	−(𝐴!"!)%#𝐵!"#

For example, for B equal to zero the steady state value will be zero.

Further we know that the condition for a matrix to be invertible
(nonsingular) is that none of its eigenvalues be zero. This results from
the fact that the determinate is the product of the eigenvalues of the
matrix.

Using this idea, we can see that the stability of a linear system is not a
function of the vector X. If the system is stable for one solution it is
stable for all solutions. Indeed, this fact will lead us to realize that from
a practical standpoint, few systems are linear in the extreme. For
example, if we design an amplifier to be linear, the linearity will only
apply over a range of inputs and outputs.

 21

There are many ways that one might define a nonlinear system and
discuss its solution. The following form is useful in our nuclear reactor
context:

𝑑𝑋&"#

𝑑𝑡
= 𝐴&"&(𝑋'($)*+,&-#)𝑋&"# + 𝐵&"#

Here the system A, X, and B is expanded to include parameters beyond
the neutron density (Fission rate) and the precursor concentrations.
They will include elements related to the coolant temperature, and any
other features which impact the system reactivity. A becomes a function
of X and its entire history.

The linear nuclear kinetics problem is stable whenever the reactivity is
less than zero. It is not stable if the reactivity is greater than or equal to
zero. (Note that stability in this formal sense is not the same idea as
controllability. Also, we use the term controllability to mean that we
may control the reactor which is different from the formal definition of
this word used in system control theory.)

We will discuss definitions of controllable reactors later in the course.

We will discuss the nonlinear example shown above at length later in the
course. When reactor fission rate impacts the temperature and hence the
reactivity we have this situation. All this will be covered later in the
course.

 22

Example Transients

The pages that follow contain several examples transients. These plots
are the log base ten of the fission rate (proportional to the log of the
neutron density); and the log base ten if the normalized precursor
concentrations.

We take advantage of the fact that A is constant and that we will use a
constant time step in the iteration. Starting with the general solution
above:

𝑋(𝑡) = Me6"𝑀#+𝑋𝑜 + MD#+(𝑒6" − 𝐼)𝑀#+𝑆

Define a time step length as 𝜏, 𝑒EF = MeDG𝑀=*. Then for subsequent
steps we only need to multiply by 𝑒EF for the next time step.

Start with G = 𝐼. Also precompute B = A=*𝑆. Then the iteration
becomes:

For Step = 0 to Number if Iterations
 G = 𝑒EF𝐺
 𝑋(𝑆𝑡𝑒𝑝 + 1) = G𝑋𝑜 + (G − 𝐼)B
End

This greatly reduces the computation. We are using MATLAB and it
requires array indexes to be greater than zero, so we need to modify the
above steps to account for this limitation, but otherwise, what we have
here is all that we need.

 23

Linear System Examples: Reactivity = 0.25𝛽 for 1 sec

 24

Examples: Reactivity = -0.25𝛽 for 1 sec

 25

Examples: Reactivity = -10𝛽 for 20 minutes with a So = 2.0x10=(

Note that the fission rate here is scaled to an initial value of one
source the source rate is on that basis. The fission rate levels off
here due to these source neutrons. We will look more at this
later.

 26

Examples: Reactivity = 1.1𝛽 for 0.5 sec

 27

MATLAB Code to Create Transients
%%
% SimplePower.m
% W.N. Locke
% May 2025
% Step response to a step at time 0. Initial fission rate normalized to 1.
% Example call: SimplePower(0.25,1)
% This will plot the 1 second transient with reactivity equal
% to 0.25*Beta
function SimplePower(ReactivityFractionOfBeta,TimeInterval)
 So = 2.0e-5; % Source Rate normalized for a unit initial fission rate.
 S = [So;0;0;0;0;0;0];
 Tau = 1.0e-4; % Time step duration in seconds.
 T_hist = 0:Tau:TimeInterval;
 HistoryLength = length(T_hist);
 X_hist = zeros(7,HistoryLength);

 Betas = ...
 [0.00021;0.00141;0.00127;0.00255;0.00074;0.00027];
 BetaTotal = sum(Betas);
 Lambdas = ...
 [0.01246403;0.03052863;0.11141479;0.30130435;1.13606557;3.01304348];
 GenerationTime = 5.0e-5;
 Xo = [1;Betas./(Lambdas*GenerationTime)];
 function A = Amatrix(ReactivityFraction)
 A = zeros(7,7);
 A(1,1) = ... % The three dots extends the line.
 BetaTotal*(ReactivityFraction-1)/GenerationTime;
 A(2:7,1) = Betas/GenerationTime; % Fills first column 2:7
 A(1,2:7) = Lambdas'; % Fills first row 2:7
 A = A + diag([0;-Lambdas]); % Fills diagonal after (1,1)
 end

 A = Amatrix(ReactivityFractionOfBeta);
 [M, D] = eig(A);
 ExpDTau = diag(exp(diag(D)*Tau),0);
 ExpATau = M*ExpDTau/M; % '/' Right multiplies by the inverse of M.
 AinvS = A\S; % '\' Left multiplies by the inverse of A.
 X_hist(:,1) = Xo(); % Copies vector Xo into the first col of X_hist.
 I = eye(7); % This is a 7x7 unit matrix.
 G = I;
 for Step = 1:HistoryLength-1
 G = ExpATau*G;
 X_hist(:,Step+1)= G*Xo+(G-I)*AinvS;
 end
 figure
 plot(T_hist,log10(X_hist(1,:)),'r')
 title('Log Fission rate vs. Time (sec)');
 xlabel("Time Isec)")
 figure
 plot(T_hist,log10(X_hist(2:7,:)./Xo(2:7)),'r')
 title('Log Normalized Precursor Concentrations vs. Time (sec)');
 xlabel("Time (sec)")
end

 28

Subcritical Multiplication

Consider a shutdown reactor. Subcritical multiplication is the process
whereby source neutrons make up for the losses in the fission chain.
When the reactor is shutdown the Keff is < 1 so neutrons are lost on
each trip around the loop. The number can be made constant with an
injection of neutrons from non-fission sources.

The delayed neutron part of the cycle is not presented here because we
are in a virtual steady state. The steady state condition is:
𝑁H"$I8J	H"I"$ = 𝐾$%%𝑁H"$I8J	H"I"$ + 𝑆Δ𝑡
The above equation may be rearranged as

Keff Nt

Nf

Nt Ni

SΔ𝑡

 29

𝑁H"$I8J	H"I"$ =	
𝑆Δ𝑡

1 − 𝐾$%%

Now once again

Λ = 	
Δ𝑡
𝐾$%%

So
 	

𝑁H"$I8J	H"I"$ =	
−𝑆Λ

1 − 1/𝐾$%%
=	
−𝑆Λ
𝜌

= 	
𝑆Λ
|𝜌|

The addition of a source impacts the first reactor kinetics equation as
follows:

𝑑𝑛(𝑡)
𝑑𝑡

= 	
𝑛(𝑡) ∗ (r− b)

L
+Hl,𝐶,(𝑡) + 𝑆

0

,/*

Here the value of S is in units of neutron density rate of change due to
sources. If there were no n(t) nor precursors at t= 0, S is the rate at
which fission rate would start to increase.

Where do source neutrons come from?

For a core that has been operated, the primary source of neutrons is the
reaction 𝐻*' +	𝛾&& 	→ 	𝐻** +	𝑛&*. This gamma must have at least 2.23
MEV. These high energy gammas come from a relatively small number
of fission product decay chains. There is a rapid reduction in this source
over the first day after shutdown. Following that the level will reduce
with a 12.8-day half-life due to Ba140 to La140 fission product decay.
Following this, after several months, decay is controlled by other
isotopes with half-lives of approximately one year.

 30

In many reactors other sources of neutrons are installed to provide a
visible count rate on the Source Range Instruments.

There also natural sources of neutrons including cosmic rays,
spontaneous fission, and certain internal core (𝛼, 𝑛) reactions. The last of
these will vary based on the specifics of the fuel being used.

 31

4. The Prompt Jump Assumption and Related Solutions of the Kinetics
Equation

The reactor kinetics differential equations bring significant difficulty.
This difficulty stems from the range of the eigenvalues of the A matrix.
If the reactivity is 0.1𝛽, we have the following eigenvalue set. These
all have units of inverse time in seconds.

-116.5533 -2.8879 -1.0094 -187.7195e-3
-62.7713e-3 10.1868 e-3 -13.8297e-3

The ultimate use of these numbers is to be multiplied by time and placed
in exponentials. The first number here is a problem. Its related term
decays rapidly, which can lead to computational issues. It develops that
this problem traces to the use of the generation time in our differential
equations. The step size needed to integrate it is much less than would
be required for the other eigenvalues.

89(")
8"

=	 (<=	>)9(")
?

+	∑ 𝜆,	𝐶,	0
,/* + S

𝑑𝐶,(𝑡)
𝑑𝑡

= 	
𝛽,
Λ
	𝑁(𝑡) −	𝜆,	𝐶,	

One solution is to approximate these equations by replacing the first
with another equation with Λ 89(")

8"
	 set to zero. Doing so introduces

error, but it will develop that the error is small so long as we do not have
rapid jumps in reactivity and that the reactivity is well below 𝛽.	 We
will handle jumps in reactivity as a discontinuity in the fission rate
(recognizing that this is non-physical). This approximation is called the
“Prompt Jump Assumption”.

The first equation then becomes:

 32

𝑁(𝑡) = 	Λ(/𝜆" 	𝐶" + 𝑆)/(𝛽 − 	𝜌)
,

"-.

If we pose an examination of a sudden step change in reactivity. We
realize that the number of precursors is continuous. The fission rate
would be continuous if we did not make the prompt jump assumption.
However, fission rate becomes discontinuous.

−	
(𝜌(0=) − 	𝛽)𝑁(0=)

Λ
= 	H𝜆,	𝐶,(0=) + 𝑆

0

,/*

−	
(𝜌(0K) − 	𝛽)𝑁(0K)

Λ
= 	H𝜆,	𝐶,(0K) + 𝑆

0

,/*

The two right sides are the same because C’s and S are continuous so

𝑁(0K) = 	𝑁(0=) l
𝛽 − 𝜌(0=)
𝛽 − 𝜌(0K)

m

Or for an initially critical reactor with a step of reactivity this becomes
the following:

𝑁(0K) = 	𝑁(0=) l
𝛽

𝛽 − 𝜌m

If we return to the plots that we showed above for fission rate transients.
Step changes in reactivity both up and down produced a rapid change in
the fission rate followed by a slow rise or fall depending on the sign of
the reactivity change. What we have done with this assumption is to
close the time for that initial rise or fall, down to zero.

 33

Understanding the Prompt Jump

1. When Keff is changed the inner prompt cycle N starts to rise.
2. The number of neutrons coming from the decay of precursors is

not yet changing. The number of neutrons being lost from the cycle
Nd is going up as the inner loop number is going up.

3. A quasi-steady state happens when the losses from the loop due to
the precursor production is equal to the gains coming across Keff.
After that fission rate only rises as the precursor decay rate
increases.

 Keff

Ci

Nt Nd

Nf Ndecay

Np Ni

 34

5. Computational Consequence of the Prompt Jump Approximation

We set the left-hand size of the of the following equal to zero and solve
for n(t):

𝑑𝑛(𝑡)
𝑑𝑡 = 	

𝑛(𝑡) ∗ (r− b)
L

+/ l"𝐶"(𝑡) + 𝑆
,

"-.

We start with the fission rate and full precursor equations:

𝑁(𝑡) = 	Λ(H𝜆,	𝐶,	 + 𝑆)/(𝛽 − 	𝜌)
0

,/*

𝑑𝐶,(𝑡)
𝑑𝑡

= 		
𝑁(𝑡) ∗ b,

L
−	l,𝐶,(𝑡)

We can write the precursor differential equations in matrix form
imbedding the fission rate equation directly as the production term
involving N(t).

dC01*

dt
= 𝐴𝑝𝑗010C01* + B01*

𝐶(𝑡) =
&

&

𝐶!
𝐶"
𝐶#
𝐶$
𝐶%
𝐶&

&

&
 𝐶𝑜(0) =

&

&

𝛽! 𝜆!⁄
𝛽" 𝜆"⁄
𝛽# 𝜆#⁄
𝛽$ 𝜆$⁄
𝛽% 𝜆%⁄
𝛽& 𝜆&⁄

&

&𝑁'/)
Λ 𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡
𝛽!
𝛽"
𝛽#
𝛽$
𝛽%
𝛽&⎦
⎥
⎥
⎥
⎥
⎤

5
𝑆

𝛽 − 𝜌9

𝐴𝑝𝑗 = 5
1

𝛽 − 𝜌9 &

&

𝛽!𝜆! − 𝜆!(𝛽 − 𝜌) 𝛽!𝜆" 𝛽!𝜆# 𝛽!𝜆$ 𝛽!𝜆% 𝛽!𝜆&
𝛽"𝜆! 𝛽"𝜆" − 𝜆"(𝛽 − 𝜌) 𝛽"𝜆# 𝛽"𝜆$ 𝛽"𝜆% 𝛽"𝜆&
𝛽#𝜆! 𝛽#𝜆" 𝛽#𝜆#*+#(-*.) 𝛽#𝜆$ 𝛽#𝜆% 𝛽#𝜆&
𝛽$𝜆! 𝛽$𝜆" 𝛽$𝜆# 𝛽$𝜆$ − 𝜆$(𝛽 − 𝜌) 𝛽$𝜆% 𝛽$𝜆&
𝛽%𝜆! 𝛽%𝜆" 𝛽%𝜆# 𝛽%𝜆$ 𝛽%𝜆% − 𝜆%(𝛽 − 𝜌) 𝛽%𝜆&
𝛽&𝜆! 𝛽&𝜆" 𝛽&𝜆# 𝛽&𝜆$ 𝛽&𝜆% 𝛽&𝜆& − 𝜆&(𝛽 − 𝜌)

&

&

 35

As before, assuming the reactivity is constant, this equation has a
solution:

𝐶(𝑡) = 𝑒BLMC𝐶(0) + 𝑒BLMCs𝑒=EN@"'B
"

&

d𝑡-

Note: The shutdown equilibrium condition is that OP
OC

 is zero. In that case
𝐶, = 𝛽,𝑁H/Q/Λ𝜆,	. Substituting, into 0 = 𝐴𝑝𝑗C + B yields the expected
shutdown equilibrium equation: 𝑁H/Q =	−

H?
<

. From a computational
perspective this is superior to the full seven-dimensional system. The
eigenvalues of the P matrix do not exhibit the wide variation found in
the full kinetics equation solution. For a critical reactor the full kinetics
eigenvalues range from zero to -129.4 sec-1. For this case, the values
range from zero to -2.9 sec-1.

Comparison of the full kinetics solution with the prompt jump
approximation solution. Reactivity = 0.25𝛽 for 1 sec.

Comparison of Full Kinetics solution and Prompt Jump
Approximation following a step insertion of Reactivity.

 36

Reactivity
(fraction of 𝛽)

Percent Error
1 Second

Percent Error
20 Seconds

0.01 0.00435691 0.00438015
0.05 0.0238797 0.0256779
0.1 0.0538971 0.0634204
0.2 0.140564 0.20239
0.3 0.285914 0.519591
0.4 0.544648 1.28996
0.5 1.04626 3.33663
0.6 2.15068 9.63026
0.7 5.13245 35.6158
0.8 16.8672 298.031

As expected, the prompt jump assumption solution falls apart as the
reactivity approaches the value of 𝛽 . In the region less than 40% of 𝛽
the prompt jump approximation is strong. Real operating reactors
usually limit reactivity to less than this value. 40% of 𝛽 would yield a
steady state SUR of about 3 DPM. 20% of 𝛽 yields about 1 DPM.

The computation approach for the prompt jump assumption cases uses
the same method as was used for the full kinetics approach. This takes
full advantage of the non-changing value of the system matrix to allow
its computation only once. Once again, we define a matrix G which is
recursively modified for each time step.

 37

Computation for a Reactivity Step using the Prompt Jump Assumption
%%
% SimplePowerPJ.m
% W.N. Locke
% May 2025
% Step response to a step at time 0. Initial fission rate normalized to 1.
% Example call: SimplePower(0.25,1)
% This will plot the 1 second transient with reactivity equal
% to 0.25*Beta
function SimplePowerPJ(ReactivityFractionOfBeta,TimeInterval)
 So = 2.0e-5; % Source Rate normalized for a unit initial fission rate.
 Tau = 1.0e-4; % Time step duration in seconds.
 T_hist = 0:Tau:TimeInterval;
 HistoryLength = length(T_hist);
 C_hist = zeros(6,HistoryLength);
 N_hist = zeros(1,HistoryLength);
 N_hist(1) = 1;
 Betas = ...
 [0.00021;0.00141;0.00127;0.00255;0.00074;0.00027];
 BetaTotal = sum(Betas);
 Lambdas = ...
 [0.01246403;0.03052863;0.11141479;0.30130435;1.13606557;3.01304348];
 GenerationTime = 5.0e-5;
 Co = [Betas./(Lambdas*GenerationTime)];
 function APJ = AmatrixPJ(ReactivityFraction)
 APJ = Betas*Lambdas';
 D = diag(Lambdas)*BetaTotal*(1-ReactivityFraction);
 APJ = (APJ - D)/(BetaTotal*(1-ReactivityFraction));
 end
 Apj = AmatrixPJ(ReactivityFractionOfBeta);
 [M, D] = eig(Apj);
 ExpDTau = diag(exp(diag(D)*Tau),0);
 ExpATau = M*ExpDTau/M; % '/' Right multiplies by the inverse of M.
 rf = 1/(BetaTotal*(1-ReactivityFractionOfBeta));
 B = Betas*So*rf;
 ApjinvB = Apj\B;
 C_hist(:,1) = Co(); % Copies vector Co into the first col of X_hist.
 I = eye(6); % This is a 6x6 unit matrix.
 G = I;
 for Step = 1:HistoryLength-1
 G = ExpATau*G;
 C_hist(:,Step+1)= G*Co+(G-I)*ApjinvB;
 N_hist(Step+1) = ...
 GenerationTime*rf*(dot(Lambdas,C_hist(:,Step+1))+So);
 end
 figure
 plot(T_hist,log10(N_hist(1,:)),'r')
 title('Log Power vs. Time (sec)');
 xlabel("Time Isec)")
 figure
 plot(T_hist,log10(C_hist(1:6,:)./Co(:)),'r')
 title('Log Normalized Precursor Concentrations vs. Time (sec)');
 xlabel("Time (sec)")
end

 38

Ramp Reactivity Additions

So far, our study of reactor kinetics has assumed a linear time-invariant
system, allowing us to use the integrating factor in solving the kinetics
equations. We treated A as constant, moving it in and out of derivatives
or integrals. However, when reactivity changes, A varies over time. This
complicates our approach. We can still write the point reactor kinetics
equations, but now A and other variables depend on both time and the
solution X or C.

dX./+

dt
= A./.X./+ + 𝑆./+	 dC01*

dt
= 𝐴𝑝𝑗010C01* + B01*

	

Prior to the days when computer and computational capabilities became
ubiquitous people put significant effort into solving the case where 𝜌(𝑡)
was a simple linear function of time. The solutions involved esoteric
tabulated functions and brought little practical help.

For example, one case is a ramp with only one delayed neutron group
being considered. Further the reactivity ramp rate,𝛾, is constrained to be
exactly 𝜆𝛽. This yields the following.

𝑛(𝑡)
𝑛&

=
𝛽0

𝛾Λ
Q𝑒#7%

−
𝛽 − 𝛾Λ − 𝛾t

𝛽
exp T

𝛾
2Λ

𝑡0 −
𝛽
Λ
𝑡V 𝑋 W1

+ 𝛽 T
𝜋
2𝛾Λ

V
+/0

exp	(
(𝛽 − 𝜆Λ)0

2𝛾Λ
) Zerf Z

𝛽 − 𝛾Λ
]2𝛾Λ

^

− erf Z
𝛽 − 𝛾Λ − 𝛾t
]2𝛾Λ

^^_`

Here the erf function is defined as:

 39

erf(𝑥) = 	s 𝑒=R(𝑑𝜉
1

&

Reference: Dynamics of Nuclear Reactors, David L. Hetrick, University
of Chicago Press, 1971.

This tells the story. We are given the simplest of changing reactivities
and we are forced into depilating assumptions which will make our
numbers too far in error to be of value. One can certainly not place this
limit on the reactivity addition rate. It is also clear that the vast
manipulation needed to arrive at this result will not enhance our
understanding of the physics present. We also understand that
computation with the one delayed group model is just wrong.

The solution to this dilemma is to turn to numerical approximation in
solving the reactor kinetics equations. The full 7x7 formulation of the
problem is difficult because of the wide variations of the eigenvalues of
the A matrix. We will use the prompt jump approximation 6x6
representation of the system. In so doing, we require the reactivity to be
maintained well below 𝛽.

In this section we introduce the “startup rate”. This is the number of
decades of fission rate change per minute (DPM). This quantity will be
discussed at length in the next section. We define it as:

𝑆𝑈𝑅 = 	26.06(𝑑𝑝𝑚 − sec)
𝑑𝑃/𝑑𝑡
𝑃

We will now look at the entire computation associated with this transient
using numerical methods with MATLAB. One could use either Python
or Julia with similar effort. The rod motion starts at “StartTime”, and has
a duration, “PullInterval”. The rod speed is defined as follows:

 40

𝑅𝑜𝑑𝑆𝑝𝑒𝑒𝑑 =
𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝐵𝑒𝑡𝑎

𝑃𝑢𝑙𝑙𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

With this the reactivity can be found as follows:

function Rho = Reactivity(t)
 if t < StartTime
 Rho = 0.0;
 elseif t < PullInterval+StartTime
 Rho = RodSpeed*(t-StartTime);
 else
 Rho = RodSpeed*PullInterval;
 end
end

We will find a history of the precursor concentrations and from this we
can compute fission rate, startup rate, and the effective precursor decay
constant. The effective decay constant is a weight average time constant
defined as follows:

𝜆.//(𝑡) =
∑ 𝜆(𝐶((𝑡)0
(1#
∑ 𝐶(0
(1# (𝑡)

The prompt jump approximation Apj matrix is developed as follows.

function APJ = AmatrixPJ(ReactivityFraction)
 APJ = Betas*Lambdas';
 D = diag(Lambdas)*BetaTotal*(1-ReactivityFraction);
 APJ = (APJ - D)/(BetaTotal*(1-ReactivityFraction));
End

 “diag” creates a diagonal matrix from the Lambdas vector.
Betas*LambdasTranspose creates the outer product of these two vectors
resulting in a matrix 𝛽,𝜆@ , “i” is the row and “j” is the column. The “ ’ ”
causes a transpose.

The B(t) vector is formed by the following:
function Bvector = B(Rho)

 41

 Bvector = Betas*So/(BetaTotal*(1-Rho));
end

The source rate is 𝑆& = 1.0𝑒 − 8.

With these devices the ode target function is:

function dCdt = TargetFunction(t,C)
 Rho = Reactivity(t);
 A = AmatrixPJ(Rho);
 dCdt = A*C+B(Rho);
end

The initial state of the precursors vector is Co

Co = Po*Betas./(Lambdas*GenerationTime);

Given this the precursor differential equations are solved in three lines:

span = [0,TotalTime];
opts = odeset(RelTol=1e-9,AbsTol=1e-10);
[T_hist,C_hist] = ode23t(@TargetFunction,span,Co,opts);

Once the history of precursor concentrations has been developed the
fission rate, 𝜆$%%, and startup rate are computed directly.

for k=1:Num
 Rho = Reactivity(T_hist(k));
 C = C_hist(k,:);
 P_hist(t) = GenerationTime*dot(Lambdas,C)/(BetaTotal*(1-Rho));
 LambdaEff_hist(k) = dot(C,Lambdas)/sum(C);
end
% This implements SUR = 26.06 dpm-sec (dP/dt)/P
SUR_hist = 26.06*diff(P_hist)./(diff(T_hist).*P_hist(2:end));

Note that the startup rate history is being computed as a vector
calculation. The diff() function takes the difference between adjacent
values. And the “./” operator causes each element of the numerator

 42

vector to be divided by each element of the denominator vector.
Likewise, the “.*” operator indicates element by element multiplication.
The diff function produces a vector of length one less than the length of
its argument.

Rho = 0.25, Initial Fission rate = 1.0

 43

Rho = -1, Initial Fission rate = 1.0

 44

We have used the prompt jump assumption for these calculations. The
following graph demonstrates the errors that result from this approach
compared to a full kinetics calculation. The plot shows the percent error
in the final fission rate reached after a 200 second transient using a ten
second start time, a ten second rod pull, followed by a 180 second wait.
The reactivity at each point is what remained after each rod pull. A total
of 1000 transients were used to create this plot.

 45

Full MATLAB Program for Computing a
Ramp Reactivity Insertion

%%
% ReactivityRampODEPJ.m
% W.N. Locke
% April 17, 2025
% Step response to a step at time 0.
% Example call: RampFission RateSUR(
% FractionOfBeta, ...
% Start Time,...
% PullInterval,...
% TotalTime
%);
%
% The first will plot the 100 second transient with reactivity equal
% to 0.25*Beta. The second will plot a shutdown
%
function ReactivityRampODEPJ()

 TReactivityRampODEPJ(0.25,10,50,200)
 % TReactivityRampODEPJ(-5,10,100,2000)
end

%%
% Global Generation Time
function TReactivityRampODEPJ(...
 FinalReactivityFractionOfBeta,...
 StartTime,...
 PullInterval,...
 TotalTime ...
)
 Lambdas = ...

[0.01246403;0.03052863;0.11141479;0.30130435;1.13606557;3.01304348];
 Betas =[0.00021;0.00141;0.00127;0.00255;0.00074;0.00027];
 BetaTotal = sum(Betas);
 GenerationTime = 5.0e-5;
 So = 1e-8;

 RodSpeed = FinalReactivityFractionOfBeta/PullInterval;

 no = 1;

 function Rho = Reactivity(t)
 if t < StartTime
 Rho = 0.0;
 elseif t < PullInterval+StartTime
 Rho = RodSpeed*(t-StartTime);
 else

 46

 Rho = RodSpeed*PullInterval;
 end
 end

 function Bvector = B(Rho)
 Bvector = Betas*So/(BetaTotal*(1-Rho));
 end

 function APJ = AmatrixPJ(ReactivityFraction)
 APJ = Betas*Lambdas';
 D = diag(Lambdas)*BetaTotal*(1-ReactivityFraction);
 APJ = (APJ - D)/(BetaTotal*(1-ReactivityFraction));
 end
 function n = FissionRate(C,Rho)
 n = GenerationTime*dot(Lambdas,C)/(BetaTotal*(1-Rho));
 end
 function dCdt = TargetFunction(t,C)
 Rho = Reactivity(t);
 A = AmatrixPJ(Rho);
 dCdt = A*C+B(Rho);
 end

 Co = no*Betas./(Lambdas*GenerationTime);
 span = [0,TotalTime];
 opts = odeset(RelTol=1e-9,AbsTol=1e-10);
 [T_hist,C_hist] = ode23t(@TargetFunction,span,Co,opts);
 Num = length(T_hist);
 LambdaEff_hist=zeros(1,Num);
 n_hist = zeros(Num,1);
 Rho_hist= zeros(Num,1);
 for k=1:Num
 C = C_hist(k,:);
 LambdaEff_hist(k) = dot(C,Lambdas)/sum(C);
 Rho_hist(k) = Reactivity(T_hist(k));
 n_hist(k) = FissionRate(C,Rho_hist(k));
 end
 SUR_hist = 26.06*diff(n_hist)./(diff(T_hist).*n_hist(2:end));

PlotKineticsData(Num,T_hist,n_hist,LambdaEff_hist,SUR_hist,Rho_hist)
end

function PlotKineticsData(...
 Num,T_hist,...
 n_hist,...
 LambdaEff_hist,...
 SUR_hist,...
 Rho_hist...
)
 figure;
 plot(T_hist,Rho_hist);
 title('Reactivity vs. Time (sec)','FontSize',16);
 ylim([1.1*min(Rho_hist),1.1*max(Rho_hist)])

 47

 grid on;
 xlabel("Time (Sec)",'FontSize',14);
 ylabel("Rho/Beta",'FontSize',14);
 figure;
 plot(T_hist,log10(n_hist));
 title(...
 'Log Prompt Jump ODE Fission Rate vs. Time
(sec)','FontSize'...
 ,16);
 grid on;
 xlabel("Time (Sec)",'FontSize',14);
 ylabel("log10(P/Po)",'FontSize',14);
 figure
 plot(T_hist,LambdaEff_hist,'r');
 title('Prompt Jump ODE Lambda eff vs. Time
(sec)','FontSize',16);
 xlabel("Time (Sec)",'FontSize',14)
 ylabel("1/Sec",'FontSize',14)
 grid on;
 figure
 plot(T_hist(2:end),SUR_hist,'r');
 title('Prompt Jump ODE Sur vs. Time (sec)','FontSize',16);
 xlabel("Time (Sec)",'FontSize',14)
 ylabel("Decades per Minute",'FontSize',14)
 grid on;
 fprintf("Number of Iterations: %d\n",Num)
 fprintf("Final ODE Lambda: %f\n",LambdaEff_hist(Num))
 fprintf("Final ODE SUR: %f\n",SUR_hist(end))
 fprintf("Final Log10 ODE Fission Rate: %g\n",log10(n_hist(end)))
end

 48

The concept of startup rate and the related equations

Early in reactor development it became evident that both the protection
equipment and operators need information related to the rate at which
fission rate changes. In simple form the kinetics equations have
exponential solutions. This led people to think of a “reactor period”, the
time it takes for fission rate to change by a factor of “e”. This measure
can however be confusing because a steady state period is infinite. The
next step is to consider an inverse period 1 τx , so fission rate is changing
as 𝑛(𝑡) = 𝑛(0)𝑒" GS . And we could display 1 τx .		Beyond this however,
the industry generally objected to being asked to think in fission rates of
“e”. The choice was to change the equation to a base ten and to convert
the resulting rate expression to units of per minute rather than per
second. τ itself is in units of seconds so the conversion is as follows
n(t) = n(0)10∫ UVW(C')[*+,-.+//123]OC'[123]

5
6 . Using this idea 𝑆𝑈𝑅 =

	𝑙𝑜𝑔*&(𝑒) ∗
0&Y 7!89#:Z

G[7!8]
	= 26.06 [DPM-sec]/	τ[\$]]. Further, using a simple

idea related to a decay equation the period may be defined as 𝜏 ≡ _(")
_̇(")

With this definition the

𝑆𝑈𝑅 = 26.06	[𝐷𝑃𝑀 − 𝑠𝑒𝑐] ∗ _̇(")
_(")

.

Alternately, this is also used in the following form within protection and
control equipment:

S𝑈𝑅 = 26.06	[𝐷𝑃𝑀 − 𝑠𝑒𝑐] 8
8"
(ln 𝑛(𝑡))

The equation 𝑆𝑈𝑅 = 26.06	[𝐷𝑃𝑀 − 𝑠𝑒𝑐] _̇(")

_(")
 may be directly used

with a stream of digital data representing n(t). For example, in simplest
form this could be: 𝑆𝑈𝑅 = 26.06	[𝐷𝑃𝑀 − 𝑠𝑒𝑐](_("K∆")=_(")

∆"∗_("K∆")
) . With real

plant data this method could present problems due to electrical noise.
The best approach would be to apply digital filtering to the samples prior

 49

to computing the difference. Digital sampling theory could also be used
to combine the difference with the filtering.

The SUR equation

We proceed by forming an expression for

𝑆𝑈𝑅 = 26.06	[𝐷𝑃𝑀 − 𝑠𝑒𝑐] ∗
𝑛̇(𝑡)
𝑛(𝑡)

This SUR equation is a tool used throughout the nuclear industry as a
training aid. The equation is usually derived making the following
assumptions:
• Point Kinetics is adequate to represent the reactor.
• The prompt jump assumption is used Λ 89

8"
≈ 0 and the reactivity is

significantly less than 𝛽.
• The delayed neutron precursors are placed into a single group with

one effective decay constant.
• Sources denoted by S are constant in time.

The first two assumptions are acceptable from the standpoint of normal
operations. The third is not, it leads to significant error in the numbers
computed by the resulting equation.

Define: 𝜆$%% = ∑ l,𝐶,(𝑡)0

,/* /∑ 𝐶,(𝑡)0
,/* 	. We plotted this value in our

ramp transient example plots above. Also recall that b	 = 	∑ b,
0
,/* .

We will proceed using the first two assumptions and the one delayed
group assumption. However, we will consider that the group decay
effective 𝜆$%% has a time derivative. This leads to an interesting
correction to the SUR equation.

 50

The original point kinetics equations are as follows:

𝑑𝑛(𝑡)
𝑑𝑡

= 	
𝑛(𝑡)(r− b)

L
+Hl,𝐶,(𝑡)

0

,/*

+ 𝑆

𝑑𝐶,(𝑡)
𝑑𝑡

= 		
𝑛(𝑡)b,
L

−	l,𝐶,(𝑡)

The one delayed group approximations and prompt jump assumptions
convert these as follows using the dot notation for the time derivative.

𝑛(𝑡) = 	
l$%%𝐶(𝑡)L+ 𝑆L

b− r
 𝐶(𝑡) =H𝐶,(𝑡)

0

,/*

𝐶̇(𝑡) = 		
𝑛(𝑡)b
L

−	l$%%𝐶(𝑡)

l$%%𝐶(𝑡) =Hl,𝐶,(𝑡)
0

,/*

	

Rearrange the first of these by clearing the denominator to the
left-hand side and perform an implicit derivative, we obtain.

𝑛̇(𝑡)(b− r) − 	𝑛(𝑡)ṙ 	= 	l$%%̇ 𝐶(𝑡)L+ l$%%𝐶(𝑡)̇ L

Now observe the following rearrangements of the above equations

l$%%𝐶(𝑡)L	 = 	𝑛(𝑡)(b− r) − 	𝑆L
𝐶(𝑡)̇ L	 = 	𝑛(𝑡)b	 − 	l$%%𝐶(𝑡)L = 	𝑛(𝑡)r	 + 	𝑆L

Substituting these equations in the implicit derivative we have the
following

 51

𝑛̇(𝑡)(b− r) − 	𝑛(𝑡)ṙ 	

= 	
l$%%̇
l$%%

[𝑛(𝑡)(b− r) − 	𝑆L] + l$%%(𝑛(𝑡)r	 + 	𝑆L)

So, we have an expression for 𝑛̇(𝑡)/	𝑛(𝑡) which is 1/𝜏.

𝑛̇(𝑡)
𝑛(𝑡)

=
ṙ+

l$%%̇
l$%%

[(b− r) −	 𝑆L𝑛(𝑡)] + l$%%(r	 + 	
𝑆L
𝑛(𝑡))

(b− r)

Case SUR Equation
𝑆	 ≠ 0
l!""̇ ≠ 0

𝑆𝑈𝑅 = 26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐]
ṙ+

l!""̇
l!""

[(b− r) −	 𝑆L𝑛(𝑡)] + l!""(r	 + 	
𝑆L
𝑛(𝑡))

(b− r)

𝑆 = 0

l!""̇ ≠ 0 𝑆𝑈𝑅 = 26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐] :
ṙ+ l!""r	
(b− r) +

l!""̇
l!""

;

𝑆	 ≠ 0
l!""̇ = 0 𝑆𝑈𝑅 = 26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐]

ṙ+ l!""(r	 + 	
𝑆L
𝑛(𝑡))

(b− r)

𝑆 = 0

l!""̇ = 0 𝑆𝑈𝑅 = 26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐]
ṙ+ l!""r	
(b− r)

The last of these is what is commonly known as the startup rate
equation.

𝑺𝑼𝑹 = 𝟐𝟔. 𝟎𝟔	[𝒅𝒑𝒎 − 𝒔𝒆𝒄]
ṙ + l𝒆𝒇𝒇r	
(b − r)

The results of this equation may be effectively corrected with the

adjustment provided by adding
l𝒆𝒇𝒇̇

l𝒆𝒇𝒇
 so long as the reactivity is much

less than b.

 52

Aside – SUR for a Sudden Insertion of Reactivity

If we do not set L $/(')

$'
= 0

𝑑𝑛(𝑡)
𝑑𝑡

= 	
𝑛(𝑡) ∗ (r− b)

L
+Hl,𝐶,(𝑡)

0

,/*

However, we can easily compute the initial SUR of a prompt critical
reactor.

 Consider a steady state reactor such that l$%%𝐶(0) = b	𝑛(0)/L. Now
assume we step a reactivity just equal to b. Prior to the precursor
concentrations changing the first reactor kinetics becomes:

;<(%)
;%

= 	𝜌	𝑛(0)/L which yields a 𝑆𝑈𝑅 = 26.06	 ;<(%)
;%

/𝑛(𝑡) = 26.06	𝜌	/L.

If L	 = 50	𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠	this will yield 3336 DPM.
This is a six group full kinetics sur solution for a step of constant
reactivity equal to b.

Typical Example Problem using the SUR equation

 53

Using this equation suppose we start from steady state and pull rods for
15 seconds. The final reactivity is 0.25b. Plot the SUR transient and
fission rate. Also assume b	 = 	640𝑝𝑐𝑚	𝑎𝑛𝑑	l$%% = 0.1 *

\$]
.

While pulling ṙ = &.'(b

*(bcd
=		 (5/300)b

Before Rods Move SUR=26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐] #$(#.'	'/ *+,)#	

('.#)
 0.000 DPM

Rods Start Moving SUR=26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐] //0##	/1!2$(#.'	'/ *+,)#	
('.#)

 0.43 DPM

Rods Finish Just
before stopping

SUR=26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐] //0##	/1!2$(#.'	'/ *+,)#.3/
('.#.3/)

 1.45 DPM

After Rods Stop SUR=26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐] #.#	/1!2$(#.'	'/ *+,)#.3/	
('.#.3/)

 0.87 DPM

The following plots demonstrate this calculation compared with a six
delayed neutron group calculation. The fission rate is plotted. The
kinetics equation results computed, and the SUR equation results are

plotted. And the computed l$%%	𝑎𝑛𝑑	
l𝒆𝒇𝒇̇

l𝒆𝒇𝒇
 are plotted. Finally, the

reactivity transient is plotted.

Plotting Power For a Varying Startup Rate

We often plot the log10(n(t)/n(0)) along with the startup rate plots. With a
varying SUR(t) the power is given by the following:

n(t) = n(0)10∫ 567(8')["#$%&#'/)*+]:8'[)*+]-
.

So, when plotting log10(n(t)/n(0)) we are simply plotting ∫ SUR(t')dt'"
& . This is

the area under the startup rate curve. Take care here with the units of time. SUR is
given in per minute. So, if we want the left-hand side of this equation in seconds,
we will need to make a time conversion as follows.

n(t) = n(0)	10∫ 567(8')["#$%&#'/)*+]
-
.

dt'[*+,]

60	[sec/min]

 54

	

There are significant differences between the computed SUR and the
values coming from the SUR equation. If we replot this using the

equation which is corrected by the term l!""
̇

l!""
 we get the following:

 55

Clearly the problem here is that it is not easy to know the value of the

ratio l!""
̇

l!""
 unless we are doing a full six group calculation as we are

here. Therefore, people use the simplified equation to get an idea of the
nature of the transient even while the numbers are incorrect.

 56

Power Turning

Examine the second part of the transient shown in the previous two
figures. The fission rate turns (the SUR is zero) well before the
reactivity is back to zero. The numerator of the SUR equation is ṙ+
l$%%r. The fission rate turns when this sum is zero. The negative ṙ is
forcing this to happen.

There are two contributions to the rate of change of fission rate, one is
the rate of change of the prompt cycle neutrons, the other is the rate of
change of the precursor concentrations. Ignoring S and l$%%̇

𝑛̇(𝑡) 	= 	
𝑛(𝑡)ṙ
(b − r)

+	
l.//𝐶(𝑡)̇ L	
(b − r)

	

Because we found 𝐶(𝑡)̇ L	 = 	𝑛(𝑡)r, we know that a positive reactivity
will always indicate that the precursor concentrations are going up. But
the negative ṙ	 will mean the prompt cycle is lowering. Fission rate turns
when the two effects sum to zero.

 57

How much reactivity is in the core at the time that fission rate turned
using the SUR equation?

ṙ + l?@@r	 = 0	

r	 = −
ṙ

l?@@
=	−(−

5
300	sec

)b/(0.1
1
sec

) = 	1/6	b

SUR Equation with Source Neutrons

𝑆𝑈𝑅 = 26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐]
ṙ+ l!""(r	 + 	

𝑆L
𝑛(𝑡))

(b− r)

Notice that this form gives the same equation as we derived for the
steady state fission rate in a shutdown reactor with sources present. The
steady state fission rate is inversely proportional to reactivity and
directly proportional to 𝑆L.

Additional Examples of Kinetics transients with fission rate below the
point of adding heat.

Keff

Ci’s

Nt Nd

Nf Ndecay

Np
Ni

 58

This is a reactor startup as a sequence of rod withdrawals.

 59

This is a close-up of a rod withdrawal when there remains a great deal of
negative reactivity in the plant. In this case the fission rate rises only a
small amount, and the SUR is small and quickly damped.

 60

This is a close-up of a rod withdrawal when there remains little negative
reactivity in the plant. In this case the fission rate rises much more, and
the SUR is larger and slowly damped.

 61

This is a reactor startup performed with a singular rod pull from -10 beta
to 0.25 beta. Discuss this transient. Why would it trouble you? The
final SUR here is again 1 DPM.

 62

This is a reactor trip from critical. Notice that the log of fission rate
becomes a straight line. What is the SUR? Notice the sudden drop in
fission rate at time zero: 𝑃&K = 𝑃&= <

b

b−r
= = 	 *

'*
𝑃&= = 0.048𝑃&=

and Log10(0.048) = 	−1.32

 63

Variation in the Effective Decay Constant

Find leff and Ci(t) in terms of the other quantities if fission rate is on a
stable period t, N(t) = N0et/t. Here the period is taken as 26.06 [dpm-
sec]/SUR.

dC,
dt

=
𝛽,
𝛬
𝑛(𝑡) − 𝜆,𝐶,

bring the term involving the Ci to the left-hand side of the equation and
multiply both sides of the equation by 𝑒.#". This makes the left-hand
side a total derivative:

𝑑
dt
(𝑒.#"𝐶,) =

𝛽,
𝛬
𝑒.#"K"/F

Integrating this from (0,t) yields:

𝐶,(𝑡) = 𝐶,(0)𝑒=.#" + 𝑒=.#"s
𝛽,
𝛬
𝑒.#"'K"'/Fdt-

"

&

This becomes:

𝐶,(𝑡) = 𝐶,(0)𝑒=.#" +
𝛽,

𝛬(𝜆, + 1/𝜏)
(𝑒" F⁄ − 𝑒=.#")

But with a stable positive period, all the 𝑒=.#" terms would be small as
compared to 𝑒" F⁄ :

𝐶,(𝑡) =
>#

f(.#K*/F)
 𝑒" F⁄

Now with

 64

𝜆cgg =
� 𝜆,𝐶,(𝑡)

0
*

� 𝐶,(𝑡)
0
*

We have the following result for the effective delayed neutron fraction
in terms of the stable positive period:

𝜆cgg =
H 𝜆,

𝛽,
(𝜆,𝜏 + 1)

0

*

H 𝛽,
(𝜆,𝜏 + 1)

)
0

*

								𝜏 = 	
26.06[𝑑𝑝𝑚 − 𝑠𝑒𝑐]

𝑆𝑈𝑅

 65

Values Computed Assuming a Stable Period
SUR

(dpm)
Effective Decay Constant

1/sec
Approximate Reactivity

as a Fraction of b
0 0.0771 0

0.1 0.0833 0.03
0.5 0.1016 0.13
1 0.1178 0.22
2 0.1405 0.34
5 0.1795 0.52
10 0.2142 0.65
100 0.3373 0.95
170 0.3578 1.0 (Prompt Critical)

Generation Time Assumed to be 5x10-5 sec.

 66

Effective decay constant with negative reactivity following a prompt
insertion of reactivity. Insertion of -1000 b.

The final value of the effective decay constant is a function of the
stepped in reactivity

Conclusion

While use of an effective decay constant of unchanging value during
transients may have some heuristic value in giving people a view of how
startup rate behaves, it is misleading and will lead to significantly wrong
answers. Kinetics analysis really requires a full solution of the
associated coupled differential equations.

 67

Transfer Functions

We looked at transfer functions in our review of Laplace transforms in a
previous lesson. Recall that transfer functions only apply in a system
which initially is in a zero state, and it is unchanging other than the state
vector. This will work for us if we consider a system of constant
reactivity but not if the reactivity is changing in time. Here we will look
at two cases where we can meet these requirements. And then we will
create a system with varying reactivity but approximating the system by
making small variations.

Source Transfer Function

Consider a sample of fissile material which contains fuel and moderator
but is not large enough to be a critical mass. It will likely have a fission
rate due to neutrons from outside sources, but that total fission rate will
be assumed to be below anything significant. We now consider the
effect of bring a neutron source into proximity with our sample.

 dX

dt
= AX + 𝑆

𝑋(𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑛(𝑡)
𝐶'(𝑡)
𝐶3(𝑡)
𝐶0(𝑡)
𝐶=(𝑡)
𝐶/(𝑡)
𝐶>(𝑡)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜌 − 𝛽
𝛬 𝜆' 𝜆3 𝜆0 𝜆= 𝜆/ 𝜆>

𝛽' 𝛬⁄ −𝜆' 0 0 0 0 0
𝛽3 𝛬⁄ 0 −𝜆3 0 0 0 0
𝛽0 𝛬⁄ 0 0 −𝜆0 0 0 0
𝛽= 𝛬⁄ 0 0 0 −𝜆= 0 0
𝛽/ 𝛬⁄ 0 0 0 0 −𝜆/ 0
𝛽> 𝛬⁄ 0 0 0 0 0 −𝜆>⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑆 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
SourceRate

0
0
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

Take the Laplace transform of this equation and solve for X

 68

𝑋 = [𝑠𝐼 − 𝐴]%#𝑆

Our transfer function is 𝐺 =	 [𝑠𝐼 − 𝐴]=* and X(0) = 0.

This is all fine and well, but how do we compute this thing?

Let’s back up to the original equation and stop before we form the
inverse:

[𝑠𝐼 − 𝐴]𝑋 = 𝑆

Now as earlier we form a diagonalized system using the eigenvalues and
the modal matrix, D and M.

We know that 𝐷 =	𝑀=*𝐴𝑀, 𝐴 = 	𝑀𝐷𝑀=*, 𝑠𝐼 = 	𝑀=*𝑠𝐼𝑀

𝐷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
d1 0 0 0 0 0 0
0 𝑑2 0 0 0 0 0
0 0 𝑑3 0 0 0 0
0 0 0 𝑑4 0 0 0
0 0 0 0 𝑑5 0 0
0 0 0 0 0 𝑑6 0
0 0 0 0 0 0 𝑑7⎦

⎥
⎥
⎥
⎥
⎥
⎤

Left multiply by 𝑀=* and inject the identity before X vector.

𝑀0.[𝑠𝐼 − 𝐴]𝑀𝑀0.𝑋 = 𝑀0.𝑆
This is

[𝑠𝐼 − 𝐷]𝑀−1𝑋 = 𝑀−1𝑆
And

 69

[𝑠𝐼 − 𝐷] = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎡
s − d1 0 0 0 0 0 0
0 𝑠 − 𝑑2 0 0 0 0 0
0 0 𝑠 − 𝑑3 0 0 0 0
0 0 0 𝑠 − 𝑑4 0 0 0
0 0 0 0 𝑠 − 𝑑5 0 0
0 0 0 0 0 𝑠 − 𝑑6 0
0 0 0 0 0 0 𝑠 − 𝑑7⎦

⎥
⎥
⎥
⎥
⎥
⎤

The inverse of a diagonal matrix is a matrix which inverts each diagonal
element so:

[𝑠𝐼 − 𝐷]#+ =	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
s − d1

0 0 0 0 0 0

0
1

s − d2
0 0 0 0 0

0 0
1

s − d3
0 0 0 0

0 0 0
1

s − d4
0 0 0

0 0 0 0
1

s − d5
0 0

0 0 0 0 0
1

s − d6
0

0 0 0 0 0 0
1

s − d7⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

So now looking at:
 	

[𝑠𝐼 − 𝐷]𝑀−1𝑋 = 𝑀−1𝑆	

𝑀0.𝑋 = [𝑠𝐼 − 𝐷]−1𝑀0.𝑆

Now multiply by M
 	

 70

X	 = 	M[𝑠𝐼 − 𝐷]−1𝑀0.𝑆	
	
So, we have done it, our transfer function is:

 𝑋 = 𝐺 ∗ 𝑆 and 𝐺 = 	 	M[𝑠𝐼 − 𝐷]%#𝑀−1

This G is easy to calculate with modern tools.
The inverse Laplace transform,	ℒ#+, of this is

ℒ#+	M�𝑠𝐼−𝐷�−1𝑀#+

=M	

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑒
;+% 0 0 0 0 0 0
0 𝑒;0% 0 0 0 0 0
0 0 𝑒;1% 0 0 0 0
0 0 0 𝑒;2% 0 0 0
0 0 0 0 𝑒;3% 0 0
0 0 0 0 0 𝑒;-% 0
0 0 0 0 0 0 𝑒;.%⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑀#+

This is the time domain impulse response of the system. That is, this is
the behavior we would get with short pulse of neutrons with an integral
of 1 were to hit our system.

To get the result for a step source we would need to multiply by So/s and
transform the result:

ℒ#+	M�𝑠(𝑠𝐼−𝐷)�−1𝑀#+𝑆𝑜

 71

X(t)

= 	M	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡(1 − 𝑒

?'@)
−𝑑1

0 0 0 0 0 0

0
(1 − 𝑒?3@)
−𝑑2 0 0 0 0 0

0 0
(1 − 𝑒?0@)
−𝑑3

0 0 0 0

0 0 0
(1 − 𝑒?=@)
−𝑑4 0 0 0

0 0 0 0
(1 − 𝑒?/@)
−𝑑5

0 0

0 0 0 0 0
(1 − 𝑒?>@)
−𝑑6 0

0 0 0 0 0 0
(1 − 𝑒?A@)
−𝑑7 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑀.'

This is not hard. First find the eigenvalues and eigenvectors of A, form
the diagonal matrix show above with the inverted terms for a given
value of s. Then multiply from the left by M and right by M inverse.

Multiplication of this result by the source vector will result in only the
first column of G being used. This is because only the first element of S
is non-zero. The first result will be the fission rate, the following six
elements will represent the precursor concentrations.

 72

 Short Term

(0.05 Seconds)
Long Term
(200 Seconds)

Impulse
Fission Rate

Impulse
Precursors

Step Fission
Rate

Step
Precursors

 73

We see a prompt jump behavior in both the impulse and step response
curves. This prompt jump is due to the sudden introduction of source
neutrons rather than a change in reactivity as we usually discuss. Before
the precursors start to respond in either case, the prompt jump will be
Hh?
>=<

. For the step response case the final equilibrium fission rate will be
=Hh?
<

. In this the log base ten of these two values are 0.0039 and 0.0078.
Based on a source rate So = 1.

MATLAB Script for Calculating Impulse or Step Response.
function [X,dt] = StepOrImpulseResponce(Rho,So,Tf,Type,PlotPoints)
 KC = KineticsConstants;
 A = KC.Amatrix(Rho);
 [M,d] = eig(A,"vector"); % M is the modal matrix, d is a vector
 % of the eigenvalues.
 dt = Tf/(PlotPoints-1);
 S = [So;0;0;0;0;0;0];
 One = ones(7,1);
 X = zeros(7,PlotPoints);
 for Step = 2:PlotPoints
 t = (Step-1)/(PlotPoints-1)*Tf;
 if Type == "Step"
 g = -(One-exp(d*t))./d; %Note this is a vector computation.
 else % Impulse Case
 g = exp(d*t); %Note this is a vector computation.

 end
 Gd = diag(g);
 G = M*Gd/M;
 X(:,Step) = G*S;
 end
end

 74

Alternate Approach to the Source Transfer Function

We will now develop a source transfer function using a traditional
algebraic approach which will be illustrative but more complex from a
computational perspective.

4&())
4)

=	&())∗(r%b)
L

+ ∑ l(𝐶((𝑡)0
(1# +S

𝑑𝐶((𝑡)
𝑑𝑡

= 		
𝑛(𝑡) ∗ b(

L
−	l(𝐶((𝑡)

Now take the Laplace transform of both and solve for N(s) eliminating
C(s), assume that n(t) and C(t) are both zero. Taking n(0) = 1.0:

𝑁(𝑠) =
1

𝑠L + (r − b) − ∑
l(b(
𝑠 + l(

0
(1#

	𝑆(𝑠)

This can be simplified a bit by moving the beta within the sum and
eliminating this leads to:

𝑁(𝑠) =
1

𝑠L + ∑ 𝑠𝛽(
𝑠 + 𝜆(

− r0
(1#

	𝑆(𝑠)

It would be best if this were in the form of a ratio of polynomials, so we
now compute one polynomial and one vector of polynomials reducing
the first by one factor

 75

𝜓 =?(𝑠 + 𝜆(

0

(1#

)

𝜑(1#:0 =	
𝜓

𝑠 + 𝜆(

Then

𝑁(𝑠) =
𝜓

𝑠(𝜓L + ∑ 𝛽(𝜑() − 𝜓r0
(1#

	𝑆(𝑠)

Below are the results for a step. This is the same as we obtained using
the matrix method above

Short Term
(0.05 Seconds)

Long Term
(200 Seconds)

 76

The following table shows the MALAB script to create these plots using
the Laplace domain method.

function PolynomialBasedTransferFunction()
 Rho = -1;
 [Numerator,Denominator]= FindNumeratorAndDenominator(-1);

 Tfinal = 0.05; % Time being observed seconds
 PlotingPoints = 10000;
 TimeArray = 1.0e-4:Tfinal/PlotingPoints:Tfinal;
 H = tf(Numerator,Denominator); %This prepares the transfer function.
 InputArray = ones(length(TimeArray),1);
 FissionRate = lsim(H,InputArray,TimeArray); %This does the simiulation.
 figure
 semilogy(TimeArray,FissionRate);
 title("Log Fission Rate vs time for a Source Step, Rho = "+ Rho);
 subtitle("Laplace Domain Method");
 xlabel("Time (Sec)");
 ylabel("Log10 Fission Rate");

end

function [Numerator,Denominator]= FindNumeratorAndDenominator(Rho)
 KC = KineticsConstants();

 Psi = 1;
 for i = 1:6
 Psi = conv(Psi,[1 KC.L(i)]);
 end
 Phi = zeros(6,6);

 for i = 1:6
 Phi(i,:) = polydiv(Psi,[1 KC.L(i)]);
 end

 D1 = KC.GenerationTime*[Psi,0]; %This is s*Psi times generation time.
 D2 = zeros(1,6);
 for i = 1:6
 D2 = D2 + KC.B(i).*Phi(i,:);
 end
 D2 = [0,D2,0]; %This is s times the sum times generation time.
 D3 = [0,-Rho*Psi*KC.BetaTotal];
 Denominator = D1+D2+D3;
 Numerator = KC.GenerationTime*Psi;
end

 77

The Zero Fission Rate Six Group Reactivity Transfer Function
Approximation

This development provides another look at a time varying reactivity and
it results in methods to measure (or approximate) the parameter >

?
. This

is done by developing a frequency domain transfer function whose
magnitude and phase is a function of a perturbation frequency. To make
this measurement, a method for providing an oscillating small reactivity
in a real reactor would be required. In any event we assume an initially
steady state reactor.

We start with the kinetics equations

𝑑𝑛(𝑡)
𝑑𝑡

= 	
𝑛(𝑡)(r − b)

L
+A l(𝐶((𝑡)

0

(1#

𝑑𝐶((𝑡)
𝑑𝑡

= 		
𝑛(𝑡)b(
L

−	l(𝐶((𝑡)

Now replace the variables with perturbed values as follows:

𝑛(𝑡) → 	𝑛& + 𝛿𝑛(𝑡)
𝐶(𝑡) → 	𝐶& + 𝛿𝐶(𝑡)
𝜌(𝑡) → 	𝜌& + 𝛿𝜌(𝑡)

Ignore all terms which involve products of variations such as
𝛿𝑛(𝑡)	𝛿𝜌(𝑡).

Also apply the steady state condition for all the terms in initial values:

0 = 	
𝑛&(r& − b)

L
+Hl,𝐶,&

0

,/*

 78

0 = 		
𝑛&b,
L

−	l,𝐶,&
This results in:

8(i_("))
8"

=	_6
L
𝛿𝜌(𝑡) +	i_(")

L
�r& − b� + ∑ l,𝛿𝐶,0

,/* (t)

𝑑𝛿𝐶,(𝑡)
𝑑𝑡

= 	
𝛿𝑛(𝑡)𝛽,

L
− 𝜆,𝛿𝐶,(𝑡)

Now take the Laplace transform of these equations and solve the system
for the transfer function (G(s) 	= i_(\)

i<(\)
). Recall that the Laplace

transform of 8j(")
8"

	is 𝑠𝑌(𝑠). Where s is the Laplace variable, and it
becomes j𝜔 in the frequency domain. This results in the following:

𝐺(𝑠) = 	
𝑛&

𝑠(L + ∑ 𝛽)
𝑠 + 𝜆)

) − r&
-
)*+

First, we solved for 𝛿𝐶,(𝑡) in the second equation and substituted into
the first to develop the required ratio.

 79

In the frequency domain this becomes

𝐺�j𝜔� = 	 𝑛&

j𝜔(L + ∑ 𝛽)
j𝜔 + 𝜆)

) − r&
-
)*+

This equation may be used to observe several parameters in reactor
testing. Plotting shows some interesting results.

So, if a reactor is presented with a small oscillating reactivity and the
resultant fission rate oscillations magnitude and phase are recorded,
these may be plotted as shown to estimate the parameters 𝛽 and Λ. The
point where the magnitude is >

?
 occurs at a frequency of *'6	kI8/\$]

'l
=

20.53𝐻𝑧.

To understand this approximation, assume r& = 0 and put the transfer
function into a one delayed neutron group form:

𝐺(j𝜔) = 	
𝑛&

j𝜔(L + 𝛽
j𝜔 + 𝜆)

=
𝑛&(𝑗𝜔 + 𝜆)

(𝑗𝜔)(L(𝑗𝜔 + 𝜆) + 𝛽)

𝐺�j𝜔� =	= 𝑛&(𝑗𝜔 + 𝜆)
(𝑗𝜔)(𝑗𝜔L + 𝜆L + 𝛽)

(−𝑗𝜔L + 𝜆L + 𝛽)
(−𝑗𝜔L + 𝜆L + 𝛽)

 80

𝐺�j𝜔� =	= 𝑛&(𝑗𝜔 + 𝜆)(−𝑗𝜔L + 𝜆L + 𝛽)
(𝑗𝜔)((𝜔L)0 + (𝜆L + 𝛽)0)

The phase of this transfer function is 45° when the real and imaginary
parts of the numerator are equal:

𝜔	𝛽 = 	𝜆0L + 	𝜆	𝛽 +	𝜔0L

If the last term on the right-hand side dominates, we have:

𝜔 ≅ 	𝛽/L

By setting the real part and imaginary part of the numerator equal we
would have a +45° angle. The factor of 1/j however represents a
rotation of minus 90 degrees yielding the required -45° angle.

To be useful this transfer needs to be in a form where the roots can be
readily computed. This implies that we need a ratio of polynomials.

To put the transfer function in this form we need to multiply numerator
and denominator by the product:

Ψ =	�(𝑠 + 𝜆,)
,

We also compute a matrix:

𝜙,,:01(= Ψ/(𝑠 + 𝜆,)

With this our equation becomes a ratio in polynomials:

𝐺(j𝜔) = 	
𝑛+Ψ

s(ΨL+∑ 𝛽"𝜙"(𝑖, :)) − Ψr+
,
"-.

	

 81

The vector Ψ and the matrix 𝜙 both have constant sets of polynomial
coefficients.

 S6 S5 S4 S3 S2 S1 S0

Ψ 1 4.60482 5.36551 1.77599 0.183602 0.00553084 4.37243e-05]

𝜙(1, :) 0 1 4.59236 5.30827 1.70983 0.162291 0.00350804

𝜙(2, :) 0 1 4.57429 5.22586 1.61645 0.134254 0.00143224

𝜙(3, :) 0 1 4.49341 4.86488 1.23397 0.0461195 0.000392446

𝜙(4, :) 0 1 4.30352 4.06884 0.550034 0.0178747 0.000145117

𝜙(5,:) 0 1 3.46876 1.42477 0.157357 0.00483454 3.84875e-05

𝜙(6,:) 0 1 1.59178 0.569413 0.0603283 0.00183082 1.45117e-05

The material in this section has been presented largely for historical
reasons. One does not do this testing of this sort on a fission rate
reactor. Generally, these tests require a specially designed
configuration. This sort of testing was done in the past using test
reactors. None the less, it is worthwhile because it has introduced a
method that will use later in analyzing the stability of closed loop reactor
systems where the reactor heats fuel water and both impact reactivity.

Oscillations of Significant Size

The small signal approximation leads to an output fission rate oscillation
with a phase delay relative to the reactivity oscillation. This misses a
real and interesting nonlinear aspect of a reactor’s response to an
oscillating reactivity. The actual output fission rate will oscillate but it
will do so about a rising average.

What follows is an oscillation with a peak reactivity of 0.25𝛽 and a
frequency of 0.016 Hz.

 82

Reactor Response to a 0.25𝛽
Oscillation

 83

Additional Topics:

1. SUR Equation Without the Prompt Jump Assumption and S=0

If we do not allow either the prompt jump assumption or the single
delayed group approximation the startup equation takes the following
form.

𝑆𝑈𝑅 = 26.06[𝑑𝑝𝑚 − 𝑠𝑒𝑐]
−Λ𝑛̈𝑛 + 𝜌̇ + 𝜆$%%𝜌 +

𝜆̇$%%
𝜆$%%

(𝛽 − 𝜌)

𝛽 − 𝜌 −
𝜆̇$%%
𝜆$%%

Λ + 𝜆$%%Λ

This equation works well for demonstrating the SUR during a rapid
change in reactivity but, near prompt criticality, it can suffer
singularities and fail. The best approach is to calculate the SUR directly
using the six-group reactor kinetics equation solutions as

𝑆𝑈𝑅 = 26.06[𝑑𝑝𝑚 − 𝑠𝑒𝑐]	𝑛̇/𝑛	

Even for the equation above we need to solve the six-group problem to
obtain the second derivative of n,	𝜆$%%, and the first derivative of 𝜆$%%.

The plots below demonstrate a prompt jump (insertion with a tau of
0.5ms). First using the prompt jump corrected equation show in this
section and last, using the version derived above for the variable lambda
effective.

 84

The first four of these plots are using the prompt jump corrected version of the SUR
equation. The last plot is SUR for the same transient using the corrected lambda
effective derivative method. One can see that the latter case significantly
overestimates the SUR during the transient. In both cases, the six-group group
solution is plotted in red.

 85

2. Another way to think about the reactor neutron multiplication

process.

Suppose we think of what is going on in a reactor as a set of
chains of fissions with each chain initiated by the decay of a
precursor or by introduction of a source neutron. The chance that
one of these neutrons causes a subsequent fission is 𝑃 =
𝐾$%%(1 − 𝛽). The expected value for the length of a chain is given
by:

< 𝑘 >	= 	
∑ 𝑘𝑃op
o/*
∑ 𝑃op
o/*

=	

𝑃
(1 − 𝑃)'

𝑃
(1 − 𝑃)

= 	
1

1 − 𝑃

This becomes:

< 𝑘 >	= 	
1

1 − 𝐾$%%(1 − 𝛽)
=
1/𝐾$%%
𝛽 − 𝜌

A critical reactor would have an expected chain length of *

>
= 155

fissions.

 86

Now suppose we consider the number of fissions caused by
precursor decay or source neutron emission in a time Δ𝑡. We
obtain a total number of chain creations as Δ𝑡(∑ 𝜆,𝐶, + 𝑆)0

,/* .
Putting this together with the expected length of each chain we
get that the total fission rate as:

𝑛 = 	

Δ𝑡
𝐾$%%

(∑ 𝜆,𝐶, + 𝑆)0
,/*

𝛽 − 𝜌

And this is our prompt jump approximation fission rate
expression:

𝑛 = 	
Λ(∑ 𝜆,𝐶, + 𝑆)0

,/*
𝛽 − 𝜌

When viewed this way, the prompt jump may be thought of
as a sudden rise in the length of the chains.

Likewise, fission rate turning with a positive reactivity and
a negative reactivity addition rate can be understood. The
positive reactivity implies that the precursor concentrations
are still rising. Hence the chain creation is also rising. The
negative reactivity addition rate will imply that there is a
shortening of the chains. Fission rate will turn when these
two effects balance.

 87

3. Perturbation approach to calculating a reactivity ramp calculation.

For small transients with a limited reactivity and for a limited time,
we can represent the kinetics equations as:

8(i_("))
8"

=	_6
L
𝛿𝜌(𝑡) +	i_(")

L
�r& − b� + ∑ l,𝛿𝐶,0

,/* (t)

𝑑𝛿𝐶,(𝑡)
𝑑𝑡

= 	
𝛿𝑛(𝑡)𝛽,

L
− 𝜆,𝛿𝐶,(𝑡)

We have assumed that any second order variation may be ignored.

In the same vein as we used in developing the prompt jump
equation we can rewrite this as:

𝑑𝐶
𝑑𝑡 = 	𝐴𝑝𝑗(0) ∗ 𝐶 +	

𝑛0
L
𝛿𝜌(𝑡)

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛽1
𝛽2
𝛽3
𝛽4
𝛽5
𝛽6⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝐴𝑝𝑗(0) is our 6x6 version of the prompt jump matrix computed
with a zero reactivity. Define the vector of betas as 𝛽. We can
integrate this as before:

𝐶(𝑡) = 𝑒BLMC𝐶(0) +
𝑛&
L
𝑒BLMCs𝑒=EN@"'𝛿𝜌(𝑡)

"

&

d𝑡-𝛽��⃗

Now remembering the basics, 𝑒BLM	C is a matrix. It can be put into
diagonal form using the same M matrix that diagonalizes the Apj matrix.

 88

This means that the task of performing the integration may be greatly
simplified. We can look at the second term as follows.

𝐶(𝑡) = 𝑒BLMC𝐶(0) +
𝑛&
L
𝑀𝑒DLMC𝑀=*s𝑀𝑒=QN@"'𝑀=*𝛿𝜌(𝑡)

"

&

d𝑡-𝛽��⃗

And because M is constant it may be moved outside of the integral.

𝐶(𝑡) = 𝑒BLMC𝐶(0) +
𝑛&
L
𝑀𝑒DLMCs𝑒=QN@"'𝛿𝜌(𝑡′)

"

&

d𝑡-𝑀=*𝛽⃗

So, during the rod pull 𝛿𝜌(𝑡′) = 𝑅𝑆 ∗ 𝑡 and after the rod pull it is
constant, 𝛿𝜌(𝑡′) = 𝑅ℎ𝑜

During the rod pull, the right-hand term becomes, for each eigenvalue,
𝑑o:

𝑅𝑆(𝑒8=">?@@#:A − 𝑑o𝑡Nxyy,_z − 1)/𝑑o'

In the case that 𝑑o is zero this becomes:

𝑅𝑆
2
𝑡Nxyy,_z'

Once the rod motion stops this contribution to the total effect includes
the integral taken to the limit of the rod pull multiplied by the decaying
𝑒DLMC . This results in the “past moving” part of the integral in that
circumstance. 𝑡]xkk$_"	 here is measured from the time that the rods
stopped moving.

𝑅𝑆(𝑒8="8?BB!:C − �1 + 𝑑o𝑡Nxyy$8�𝑒8=("8?BB!:C=">?@@!D))/𝑑o'

If 𝑑o is zero, this reduces to 𝑅𝑆 ∗ 𝑡Nxyy$8'.

 89

Finally with the pulling stopped we need to add the contribution of the
existing constant reactivity Rho:

𝑅ℎ𝑜 ∗ (𝑒8="8?BB!:C − 1)

If 𝑑o is zero, this reduces to Rho*𝑡]xkk$_".

So, we wind up with a resulting diagonal matrix 𝐷�(𝑡) which is a
function of time with its diagonal elements computed using either the
first (moving) equation or the sum of the second two (past moving and
stopped) equations.

So, we can develop the final form of the term as follows

𝑛&
L
𝑀𝐷�(𝑡)𝑀=*𝛽��⃗

Thus, with the limiting constraint requiring a small Rho and a short time
we have the following ready to exactly compute:

𝐶(𝑡) = 𝑒BLMC𝐶(0) +
𝑛&
L
𝑀𝐷�(𝑡)𝑀=*𝛽��⃗

While this is interesting, from a practical standpoint we can not so
drastically limit the time of a transient or the amount of reactivity. The
following graph shows the percent error in this expression relative to a
numerically computed solution without the perturbation approximation.
In each case we are allowing the transient to start after ten seconds, pull
rods for ten seconds, and wait after the pull for 40 sec. We are
measuring only the final fission rate after the transient.

 90

This approach is interesting in that it can be directly computed but as
may, be seen with only 0.1𝛽 of reactivity, the error is 17%. A typically
1DPM startup rate results from 0.25𝛽.

