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Introduction 
 
 
This document is provided to serve as class notes for a course in nuclear reactor 
kinetics.  The purpose of this paper is to start with a point kinetics model and 
consider: 
 

1. Review the fission process and other fundamentals. 
2. The reactor model with only prompt neutrons. 
3. Development of the reactor kinetics equations. 
4. Traditional solution methods for the kinetics equations. 
5. Matrix methods for solution of the kinetics equations. 
6. The prompt jump assumption and related solutions of the kinetics 

equation. 
7. The one delayed group assumption and the consequences of this 

assumption. 
8. Ramp additions of reactivity. 
9. Startup rate and related equations. 
10. Source and reactivity transfer functions. 

 
A point kinetics model is based on assuming that the differential equations 
associated with a reactor are separable in space and time. That is, the solutions for 
fission rate, flux, and other commodities may be treated as a product of a function 
of time multiplied by a function of space.  Real reactors will not have this 
behavior, but in most cases the choice is a good approximation.  In this course, our 
interest is the time behavior of reactors.  
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1. Review The Fission Process 
 

The Fission Process 
 

 

 
• The kinetic energy of the fission 

fragments is spent within the 
metal or ceramic matrix of the 
fuel. This is the primary source of 
heat in the reactor. 

• The total energy released in a 
fission is approximately 200 MEV. 

• Once the fission fragments lose 
their internal excitation energy, 
they become known as fission 
products.  

•  The fission products are neutron 
rich, and they undergo beta 
minus decay. This reduces the 
number of neutrons by one while 
increasing the number of 
protons. These decays have half-
lives ranging from fractions of a 
second, to years.   

• The beta decay of the fission 
products releases both beta and 
gamma radiation.  This produces 
“decay heat”, this decay heat 
represents nearly 7% of the total 
reactor heat. 

• The neutrons that have a high 
probability of causing fission 
have low energy, on the order of 
0.025 EV. The neutrons born in 
fission need to be slowed down 
in order to cause a subsequent 
fission with high probability. 

• Note an EV is an “electron-volt”, 
the energy gained by an electron 
falling through a potential 
difference of one volt.  An MEV is 
a million electron-volts. 

 

• The Low Energy Neutron is absorbed by 
the U-235 nucleus; energy is released as 
this happens.  The energy is initially in the 
form of nuclear vibration.  When the 
nucleus takes a dumbbell shape, the 
nuclear forces cannot prevent separation 
due to the strong electrostatic forces 
repelling the fission fragments.   

• The fission fragments lose energy by 
emitting neutrons and gamma radiation. 

• This process takes about 10-12 sec. 
• The fission fragments repel each other 

departing with nearly 165 million electon-
volts of kinetic energy. 

• Prompt Neutrons and Gammas are 
produced directly from the fission. These 
neutrons have energies averaging nearly 2 
MEV.  On the average, about 2.5 prompt 
neutrons are born directly in fission. 
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Neutron Lifecycle 
 
Neutrons are produced in an operating reactor primarily from initial 
decay of excited state fission fragments (prompt neutrons). These 
neutrons have energies on the order of an MEV.  There are also neutrons 
that come from the decay of fission products much later. And some 
neutrons are derived from other sources.  These generally have energies 
on the order of tenths of an MEV.  If there is to be a large chance of 
these neutrons causing fission, they need to be slowed down to energies 
that are hundredths an electron volt (EV). So, the kinetic energy of the 
neutrons needs to be reduced by a factor of roughly 1.0x10-8.  This is 
accomplished using collisions with a material (such as water) which 
contains a significant amount of hydrogen.  At the same time, there is a 
chance that neutrons will be adsorbed in materials within the reactor that 
do not yield a fission.  The neutrons may also leak out of the reactor.  
We will study these phenomena in detail in a future lesson.  For now, 
define Keff, the number of neutrons that follow a cycle divided by the 
number of neutrons that start the cycle. We apply the term “cycle” here 
loosely as if the system grouped neutrons and passed them through the 
process sequentially.  This idea is not what happens, but the thought is 
useful for understanding the behavior of a reactor. 
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2. Prompt Neutron Only Model (As if there were no delayed 
neutrons) 

 
Examine the dynamic behavior of a point reactor with only prompt 
neutrons: 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑁! − 𝑁" =	𝐾#!!𝑁" −	𝑁" 

𝑁! − 𝑁"
Δ𝑡 = 	

(1 − 1
𝐾#!!

*𝐾#!!𝑁"

Δ𝑡  
 
For small Δ𝑡.  

$%(')
$'

=	 )%(')
*

  
 
Where generation time, Λ = 	 !"

#!""
 and 𝜌 = 1 − 1/𝐾$%% 

If the reactivity is not a function of time the resulting neutron population 
is: 

Keff Nf 

Nf 

Nf 
Ni 
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𝑁(𝑡) = 𝑁+𝑒
)'
*  

 
A typical value for the generation time is 5x10-5sec.  And a reasonable 
reactivity would be 250x10-5. (This number would commonly be written 
as 250 pcm.)  After one second this would lead to a large value of N(t).  
 

𝑁(1sec) = 	𝑁&𝑒'(&∗*/( = 𝑁&𝑒(& = 𝑁& ∗ 5.2𝑥10'* 
 
This is not acceptable if 250 pcm is a reasonable reactivity.  The 
reactivity value is typical so a reactor without delayed neutrons would 
not be controllable.  
 

3. Delayed Neutron Impact 
 
It is instructive to consider an estimate where we simply modify the 
generation time by including the impact of the delayed neutron groups.  
This does not lead to correct dynamic behavior, but it demonstrates a 
key point related to the effective decay constant.  If a radioactive 
element has a decay constant, 𝜆		 ,then its mean expected life is 1/𝜆.  We 
think of the known precursors as existing within groups with similar 
decay constants. 
 
Group Half-life (sec) 𝜆, % Fission 𝛽, 
1 55.72 0.0124 2.25 0.000215 
2 22.72 0.0305 21.8605 0.001424 
3 6.22 0.111 19.6899 0.001274 
4 2.3 0.301 39.5349 0.002568 
5 0.610 1.14 11.472 0.000748 
6 0.230 3.01 4.1860 0.000273 

 
The 𝛽,  in this table are the fraction of all neutrons born in fission that 
are born into the i’th group.  The adjusted generation time weighted by 
the 𝛽,	could be: 
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Λ-= The fraction of 
the neutrons that 
are born prompt 
times Λ 

The fraction of 
neutrons born into 
the i’th group times 
the mean decay 
time of the group 
plus Λ 

 
Λ- = (1 − 𝛽)Λ +	∑ 𝛽, <

*
.#
+ Λ= =,/0

,/*  Λ +	∑ 𝛽,/,/0
,/* 𝜆, = 0.837𝑠𝑒𝑐  

 
Here we have assumed that a delayed neutron, once born, will have the 
same chance as a prompt neutron of slowing down and causing a new 
fission.  This is not exactly accurate as we will find later.  Note: 𝛽 is the 
sum of the 𝛽,. 
 
The interesting result here is that while the delayed neutrons are a small 
fraction of the total neutrons born in fission, they represent a major 
influence on the overall time constant in the system because of their 
relatively long lifetimes. 
 
So, with 250 pcm  (1 pcm = 1.0x10-5)  of reactivity we have: 
 

𝑁(1sec) = 	𝑁&𝑒'(&1*&
$%∗*/&.345 = 𝑁&𝑒&.&'66 = 1.0303	𝑁& 

 
Without developing equations which demonstrate the dynamic behavior 
of the reactor we already have a feel for why delayed neutrons are so 
important in making reactor control possible.  Their relatively long 
lifetimes have a significant impact. 
 
We shall now develop a more detailed view of the kinetics of a reactor. 
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The Effective Delayed Neutron Fraction 

 
The values of the delayed neutron fraction tabulated above are the 
fraction of the neutrons born in thermal fission that are born delayed.  
These are a property of the fuel itself and are fixed.  The parameter that 
matters in a thermal reactor is the fraction of thermal neutrons that were 
born delayed. This means that not only do the neutrons need to be 
created but they also need to be slowed down to thermal energies as do 
the prompt neutrons.  This introduces a complication.   
 
The prompt neutrons are born with a mean energy of about 2 MEV.  The 
delayed neutrons are born at many different energies, largely an order of 
magnitude less than the prompt neutron birth energy.  This means that 
delayed neutrons are more likely to successfully thermalize than prompt 
neutrons.  This effect will cause an increase in the effective value of this 
fraction.  These new fractions are denoted as 𝛽̅, and 𝛽̅.  
 
For a geometrically small reactor this value tends to be large as the 
leakage effects will accentuate the difference in the slowing down 
probability.  The effect is much less in a large reactor. 
 
Low enrichment cores will also have fuel conversion from U238 to Pu239.  
Over time the fuel concentration shifts towards Pu239 while not 
eliminating U235 completely. Pu239 has a 𝛽 of approximately 200x10-5 as 
compared to 640x10-5 for U235. This tends to drive the 𝛽̅ for the system 
down.   
 

A typical large thermal reactor could have a 𝛽̅ ranging from 700x10-5 at 
beginning of life down to about 500x10-5 at the end of life. (Data for 
AP1000, T.M. Sembiring et al 2018 J. Phys.: Conf. Ser. 962 012030) 
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 This paper is available at: 
https://iopscience.iop.org/article/10.1088/1742-
6596/962/1/012030/pdf 

  
 
This document uses 𝛽,  and 𝛽 throughout rather than the adjusted values. 
The kinetics transients and other calculations are done using these 
natural fuel values for U235.  For the cases where MATLAB programs 
are provided it would be a small matter to adjust these values if needed. 
 
In the process of defining the internal kinetics of a reactor we define an 
entity called a delayed neutron precursor.  This is a fission product 
which decays at some point releasing a delayed neutron.  Real isotopes 
tend to release delayed neutrons with some probability.  We make a 
distinction here.  Precursors are a population that do release a delayed 
neutron so the probability that a delayed neutron is released from the 
decay of a precursor is one.  We use the symbol "𝐶," to represent the 
concentration of precursors in the i’th group. And we use the symbol, 
“C”, to represent the total concentration of precursors. 
 
We will now build a “cycle model” to provide an intuitive derivation of 
the reactor kinetics equations.  We start with only the concept of Keff, 
delayed neutrons with 𝛽 and 𝛽,  and we think of about the numbers of 
neutrons as we go around a cycle. 
 
In the future we will look at a much more first principles-based version 
of this derivation. The interesting thing is that we will find that our 
simple derivation produces the exact result, not a conceptual 
approximation. 
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1. Development of the Reactor Kinetics Equations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ni = Neutrons starting one generation 
Nt = Fictitious number of neutrons after Keff 
Nd = Number of neutrons that will be born delayed = 𝛽𝐾$%%𝑁𝑖  
S    = Number of neutrons from other sources in Δ𝑡. 
Np = (1 − 	𝛽)𝐾$%%𝑁, 
Ndecay = ∑ 𝜆,	𝐶,	Δ𝑡0

,/*  
Nf = (1 − 	𝛽)𝐾$%%𝑁, +	∑ 𝜆,	𝐶,	Δ𝑡0

,/* + 𝑆Δ𝑡 
The change in neutron population in one generation is: 
 
𝑁% −𝑁, =	 (1 − 	𝛽)𝐾$%%𝑁, +	∑ 𝜆,	𝐶,	Δ𝑡0

,/* 	+ 𝑆Δ𝑡 −	𝑁,  
 

Keff 

Ci 

Nt Nd 

Nf Ndecay 

Np 
Ni 

SΔ𝑡 
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So  
 

𝑁% −𝑁,
Δ𝑡

= 	 (1 − 	𝛽)𝐾$%%𝑁, +	H𝜆,	𝐶,	Δ𝑡
0

,/*

+ 𝑆 −	𝑁, 

 
Or 

𝑁% −𝑁,
Δ𝑡

= 	
I1 − 1

𝐾$%%
− 	𝛽J𝐾$%%𝑁,

Δ𝑡
+	H𝜆,	𝐶,	 + 𝑆

0

,/*

 

This becomes for small delta t.  
 

89(")
8"

=	 (<=	>)9(")
?

+	∑ 𝜆,	𝐶,	0
,/* + S 

 
Where Λ = 	 !"

#!""
 

 
Similarly 
 

𝑑𝐶,(𝑡)
𝑑𝑡

= 	
𝛽,
Λ
	𝑁(𝑡) −	𝜆,	𝐶,	 

 
 
Observations: 
 
• These equations represent a group of seven differential equations. 

If the reactivity is piecewise constant they may be treated as linear 
equations and solved in closed form.   

• The quantity 𝜌	 = 	1 − *
#!""

 is the reactivity.  It may be arbitrarily 

negative.  It must be maintained less than 𝛽 for the reactor to be 
controllable as may be seen by examining the first reactor kinetics 
equation. 
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• When the reactivity is not constant, these equations are nonlinear 
and are often solved using approximation techniques. 
 

§ The Prompt Jump Assumption. (Good assumption): For 
small reactivity, the quantity Λ 89(")

8"
 is considered small 

enough to ignore. This removes much of the 
computational difficulty (stiffness) in the equations 
resulting in a reduction of the first kinetics equation to: 
 
 𝑁(𝑡) = 	Λ(∑ 𝜆,	𝐶,	 + 𝑆)/(𝛽 − 	𝜌)0

,/*  
 
This reduces the kinetics problem to solving the six 
precursor differential equations. 
 
As long as the reactivity is controlled to be much less 
than 𝛽 this is adequate to develop accurate results. 
 
A stiff problem is one where the derivative can have 
large erroneous values when the unknown itself is 
small. 
 

§ The one delayed group assumption (Very poor 
assumption): The six groups of precursors are treated as 
one group with a single decay constant. The sum is 
reduced to 𝜆$%%𝐶. This approach is used primarily in 
teaching environments.  It is not helpful in 
understanding the precise values of the related 
parameters.   In any case this assumption reduces the 
kinetics problem to a single differential equation 
coupled with the prompt jump approximation algebraic 
fission rate equation. 
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2. Traditional Solution Methods for the Reactor Kinetics Equations 
 
Traditional Approach (Without Prompt Jump or one delayed group 
assumption) 
 
Assume reactivity is not a function of time (Linear Case) and there are 
no external sources of neutrons.  For now, set S = 0. 
 

𝑑𝑛(𝑡)
𝑑𝑡

= 	
𝑛(𝑡)(r− b)

L
+Hl,𝐶,(𝑡)

0

,/*

 

 
𝑑𝐶,(𝑡)
𝑑𝑡

= 		
𝑛(𝑡)b,
L

−	l,𝐶,(𝑡) 
 

This amounts to seven differential equations in seven function 
unknowns. The equations have constant coefficients and are known to 
have solutions which will be linear sums of terms.   
 

𝑛(𝑡) = 	H𝑎@𝑒w&"
0

@/&

 

𝐶, =	H𝑏,@𝑒w&"
0

@/&

 

 
The seven {wj= 0:6} are the roots of the characteristic equation: 
 
Let n = aewt and Ci(t) = bi ewt.  Recognizing that the derivative of ewt is 
just w ewt we see that all the terms with ewt will drop out of the equation 
leading to 
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w𝑎 = 	
𝑎(r− b)

L
+Hl,𝑏,

0

,/*

 

 

w𝑏, =		
𝑛(𝑡)b,
L

−	l,𝑏, 
Solving the second of these equations for bi and substituting into the first 
gives the following form with “a” canceled. 
 

w =	
(r− b)

L
	+ 	

b,l,
L(w+ l,)

	 

 
Now solving for the reactivity, we get: 

r	 = 	wL	 +H
wb,

(w	 + 	l,)

0

,/*

 

 
This is known as the in-hour equation (inverse-hour), and it has the 
following properties: 
 

1. The reactivity is limited by the physics of the system. For example, 
there are about 2.5 neutrons created per fission and a fuel 
absorption has only approximately 5/6 chance of creating a fission.  
So Keff could be no larger than '.(∗(

0
. This alone would bound the 

reactivity at 0.52.  Realistically other absorption and leakage 
would further limit the reactivity.  As we have seen, safe reactor 
operation must limit reactivity to well below b. 

2. There are seven real roots for w  and they vary over a large range. 
3. If r	 > 0 the equation will have one positive root, 𝜔&.  All others 

are non-zero and negative.  For large positive reactivities much 
greater than 𝛽 the asymptotic value of 𝜔& = 	𝜌/Λ. 

4. If r	 < 	0	 the equation will have seven negative roots. 



 14 

5. The most negative eigenvalue is asymptotic to =*
?#!""

. This is on the 

order of -1.0x105 sec-1 
6. In the positive and negative directions, each eigenvalue is 

asymptotic to one of the {𝜆,} except at the ends. 
 

 

 
 
The reference is available at: 
http://milproj.dc.umich.edu/pdfs/books/1976_Nuclear%20Reactor%20A
nalysis.pdf 
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Here are some solutions for w assuming Λ = 50𝜇𝑠𝑒𝑐 
 

r/b 0.0  0.1 0.25 1.0 4.0 
w& -0.0000 0.0102 0.0395 6.6280 1161.0 
w* -0.0144 -0.0138 -0.0134 -0.0128 -0.012504 
w' 0.0682 -0.0628 -0.0548 -0.0380 -0.031206 
w4 -0.1950 -0.1877 -0.1764 -0.1376 -0.11367 
wA -1.0203 -1.0094 -0.9889 -0.6921 -0.31443 
w( -2.8992 -2.8880 -2.8664 -2.2738 -1.1507 
w0 -129.4078 

 
-116.5533 
 

-97.2944 -8.0785 -3.0272 

 
 

r/b	  -0.1 -0.25 -1.0 -10 
w&	 -0.0058468 -0.0097112 

 
-0.011986 
 

-0.012423 
 

w*	 -0.01532 -0.017606 
 

-0.024912 
 

-0.029871 
 

w'	 -0.073233 -0.079534 
 

-0.095291 
 

-0.10928 
      
 

w4	 -0.20185 -0.21115 
 

-0.24199 
 

-0.29042 
 

wA	 -1.0295 -1.0409 
 

-1.0743 
 

-1.1243 
 

w(	 -2.9085 -2.92 
 

-2.9531 
 

-3.0017 
 

w0	 -142.27 -161.58 
 

-258.2 
 

-1419 
 

 
 
 
Prompt Criticality r/b = 1.0 
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This has been the traditional approach towards understanding reactor 
kinetics.  The method requires a constant reactivity so it may only be 
used in a region where fission rate does not affect reactivity.   
 
What remains is to determine the 49 coefficients for the exponential 
terms in each of the sums. 

𝑛(𝑡) = 	H𝑎@𝑒w&"
0

@/&

 

𝐶, =	H𝑏,@𝑒w&"
0

@/&

 

 
This done by matching the initial conditions on n and 𝐶, as well as their 
derivatives and is a great deal of work. 
 
Next, we will look at another approach that lends itself more readily to 
modern tools such as MATLAB, Python, Mathematica, and so on.  The 
new method also requires a constant reactivity for now. 
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3. Matrix Method for solving the Reactor Kinetics Equations 
 

Modern computer programs make manipulation of matrixes and vectors 
easy. This includes the computation of eigenvalues and eigenvectors 
related to matrixes.  This means that a simple method is available for 
solving the kinetics equations which allows computation in only a few 
lines of programming.  For example, MATLAB can be used to perform 
this quickly.   
 
The seven reactor kinetics equations may be written as: 
 

dX
dt
= AX + 𝑆 

 
Where:  
 

𝑋(𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑛(𝑡)
𝐶!(𝑡)
𝐶"(𝑡)
𝐶#(𝑡)
𝐶$(𝑡)
𝐶%(𝑡)
𝐶&(𝑡)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜌 − 𝛽
𝛬

𝜆! 𝜆" 𝜆# 𝜆$ 𝜆% 𝜆&
𝛽! 𝛬⁄ −𝜆! 0 0 0 0 0
𝛽" 𝛬⁄ 0 −𝜆" 0 0 0 0
𝛽# 𝛬⁄ 0 0 −𝜆# 0 0 0
𝛽$ 𝛬⁄ 0 0 0 −𝜆$ 0 0
𝛽% 𝛬⁄ 0 0 0 0 −𝜆% 0
𝛽& 𝛬⁄ 0 0 0 0 0 −𝜆&⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
𝑆 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
So
0
0
0
0
0
0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑋𝑜

=
𝑛'
Λ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
Λ

𝛽!/𝜆!
𝛽"/𝜆"
𝛽#/𝜆#
𝛽$/𝜆$
𝛽%/𝜆%
𝛽&/𝜆&⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
So is the source rate and  𝑛' is the initial fission rate. 
 
Assuming the reactivity is constant this equation has a solution using the 
integrating factor:	𝑒=BC 
 

𝑋(𝑡) = 𝑒!"𝑋𝑜 + 𝑒!".𝑒#$%(S(t)
%

&

d𝑡' 

and  



 18 

𝑒!" =0(1/𝑖!
(

)*&

)(At)) 

 
We will assume the source term S is constant which results in X(t) 
being: 
 

𝑋(𝑡) = 𝑒!"𝑋𝑜 + 𝐴#+𝑒!"(1 − 𝑒#!")𝑆 = 𝑒!"𝑋(0) + 𝐴#+(𝑒!" − 𝐼)𝑆 
 
The obstacle here is the computation of the matrix exponential.  This 
problem can be greatly simplified using diagonalization of A as follows.  
Define the eigenvalues and eigenvectors of A as follows: 
 

Det(𝐴 − 𝜔𝐼) = 0 Ae<⃗ &..-./+ = 𝜔&..-𝑒&..-./+ 

 
The matrix is 7X7 and there will be seven solutions for omega.  There 
will be seven eigenvectors E.  Formally the solutions for omega could be 
real or complex where the complex roots would appear in congregate 
pairs.  As it happens, the roots to this problem all are real.  Likewise, the 
eigenvectors are real.	 
 
The key idea here is that a matrix M formed with its columns being the 
eigenvectors may be used to form a diagonal form of the A matrix. 
 

𝑀./. = [𝑒&./+ 𝑒+./+ 𝑒0./+ 𝑒1./+ 𝑒2./+ 𝑒3./+ 𝑒-./+] 
 

𝐷 = 𝑀#+AM 
and 

𝐷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜔& 0 0 0 0 0 0
0 𝜔+ 0 0 0 0 0
0 0 𝜔0 0 0 0 0
0 0 0 𝜔1 0 0 0
0 0 0 0 𝜔2 0 0
0 0 0 0 0 𝜔3 0
0 0 0 0 0 0 𝜔-⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
The following relationships also hold 
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𝐴 = MDM#+ 𝐴#+ = MD#+𝑀#+  
 
We can write 
 

𝑒4% =0(1/𝑖!
(

)*&

)(𝑀#+𝐴𝑀𝑡)) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑒
5)% 0 0 0 0 0 0
0 𝑒5*% 0 0 0 0 0
0 0 𝑒5+% 0 0 0 0
0 0 0 𝑒5,% 0 0 0
0 0 0 0 𝑒5-% 0 0
0 0 0 0 0 𝑒5.% 0
0 0 0 0 0 0 𝑒5/%⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
So, the solutions to the kinetics equations: 
 

𝑋(𝑡) = 𝑒!"𝑋𝑜 + 𝐴#+𝑒!"(1 − 𝑒#!")𝑆 = 𝑒!"𝑋(0) + 𝐴#+(𝑒!" − 𝐼)𝑆 
 
May be rewritten as follows: 
 

𝑋(𝑡) = Me6"𝑀#+𝑋𝑜 + MD#+(𝑒6" − 𝐼)𝑀#+𝑆 
 
Which may be directly computed once the eigenvectors and eigenvalues 
are known. 
 
Once we have defined A, X, and S, MATLAB computes D and the M 
matrixes with one command.  The 𝑒DC matrix, are computed. Finally, X 
for any value of t can be found. This gives us the fission rate and all 
precursor concentrations for each value of time. 
 
Note that A, M, M-1, D, and D-1 are constant for all steps in the iteration 
and need only be computed once.  Further note that D-1 may be 
computed by inverting the diagonal elements of D. Further, products 
such as MD=* and 	𝑀=*𝑆	need	only	be	computed	once. 
 
Software tools such as MATLAB use various mathematical methods, 
such as the Pade approximation, to compute the matrix exponential.  
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This avoids the need to perform the diagonalization explained in this 
document.  Hence the matrix nay be found simply as ExpAt = 
expm(A*t).  We will use the diagonalization method because it is 
instructive. 
 
Linear System Stability 
 
A linear system defined by 
 

𝑑𝑋!"#

𝑑𝑡
= 𝐴!"!𝑋!"# + 𝐵!"# 

 
is stable if all the eigenvalues of A have negative real parts.  
This implies that for any finite B there will be a steady state 
value of X given by  
 

𝑋!"#$$ =	−(𝐴!"!)%#𝐵!"# 
 
For example, for B equal to zero the steady state value will be zero. 
 
Further we know that the condition for a matrix to be invertible 
(nonsingular) is that none of its eigenvalues be zero.  This results from 
the fact that the determinate is the product of the eigenvalues of the 
matrix. 
 
Using this idea, we can see that the stability of a linear system is not a 
function of the vector X.  If the system is stable for one solution it is 
stable for all solutions.  Indeed, this fact will lead us to realize that from 
a practical standpoint, few systems are linear in the extreme.  For 
example, if we design an amplifier to be linear, the linearity will only 
apply over a range of inputs and outputs. 
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There are many ways that one might define a nonlinear system and 
discuss its solution.  The following form is useful in our nuclear reactor 
context: 
 

𝑑𝑋&"#

𝑑𝑡
= 𝐴&"&(𝑋'($)*+,&-# )𝑋&"# + 𝐵&"# 

 
Here the system A, X, and B is expanded to include parameters beyond 
the neutron density (Fission rate) and the precursor concentrations.  
They will include elements related to the coolant temperature, and any 
other features which impact the system reactivity.  A becomes a function 
of X and its entire history. 
 
The linear nuclear kinetics problem is stable whenever the reactivity is 
less than zero.  It is not stable if the reactivity is greater than or equal to 
zero.  (Note that stability in this formal sense is not the same idea as 
controllability.  Also, we use the term controllability to mean that we 
may control the reactor which is different from the formal definition of 
this word used in system control theory.) 
 
We will discuss definitions of controllable reactors later in the course. 
 
We will discuss the nonlinear example shown above at length later in the 
course.  When reactor fission rate impacts the temperature and hence the 
reactivity we have this situation.  All this will be covered later in the 
course. 
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Example Transients 
 
The pages that follow contain several examples transients.  These plots 
are the log base ten of the fission rate (proportional to the log of the 
neutron density); and the log base ten if the normalized precursor 
concentrations. 
 
We take advantage of the fact that A is constant and that we will use a 
constant time step in the iteration.  Starting with the general solution 
above: 

𝑋(𝑡) = Me6"𝑀#+𝑋𝑜 + MD#+(𝑒6" − 𝐼)𝑀#+𝑆 
 
Define a time step length as 𝜏, 𝑒EF = MeDG𝑀=*.  Then for subsequent 
steps we only need to multiply by 𝑒EF for the next time step.   
 
Start with G = 𝐼.  Also precompute B = A=*𝑆. Then the iteration 
becomes: 
 

For Step = 0 to Number if Iterations 
 G = 𝑒EF𝐺  
 𝑋(𝑆𝑡𝑒𝑝 + 1) = G𝑋𝑜 + (G − 𝐼)B  
End   

 
 
This greatly reduces the computation. We are using MATLAB and it 
requires array indexes to be greater than zero, so we need to modify the 
above steps to account for this limitation, but otherwise, what we have 
here is all that we need. 
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Linear System Examples: Reactivity = 0.25𝛽 for 1 sec 
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Examples: Reactivity = -0.25𝛽 for 1 sec 
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Examples: Reactivity = -10𝛽 for 20 minutes with a So = 2.0x10=( 
 

 
 
Note that the fission rate here is scaled to an initial value of one 
source the source rate is on that basis.  The fission rate levels off 
here due to these source neutrons.  We will look more at this 
later.
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Examples: Reactivity = 1.1𝛽 for 0.5 sec 
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MATLAB Code to Create Transients 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% SimplePower.m 
% W.N. Locke 
% May 2025 
% Step response to a step at time 0. Initial fission rate normalized to 1. 
% Example call: SimplePower(0.25,1) 
% This will plot the 1 second transient with reactivity equal 
% to 0.25*Beta 
function SimplePower(ReactivityFractionOfBeta,TimeInterval) 
    So = 2.0e-5; % Source Rate  normalized for a unit initial fission rate. 
    S = [So;0;0;0;0;0;0]; 
    Tau = 1.0e-4; % Time step duration in seconds. 
    T_hist = 0:Tau:TimeInterval; 
    HistoryLength = length(T_hist); 
    X_hist = zeros(7,HistoryLength); 
     
    Betas = ... 
        [0.00021;0.00141;0.00127;0.00255;0.00074;0.00027]; 
    BetaTotal = sum(Betas); 
    Lambdas = ... 
       [0.01246403;0.03052863;0.11141479;0.30130435;1.13606557;3.01304348]; 
    GenerationTime = 5.0e-5; 
    Xo = [1;Betas./(Lambdas*GenerationTime)]; 
    function A = Amatrix(ReactivityFraction) 
        A = zeros(7,7); 
        A(1,1) = ...  % The three dots extends the line. 
        BetaTotal*(ReactivityFraction-1)/GenerationTime;  
        A(2:7,1) = Betas/GenerationTime; % Fills first column 2:7 
        A(1,2:7) = Lambdas'; % Fills first row 2:7 
        A = A + diag([0;-Lambdas]); % Fills diagonal after (1,1) 
    end 
    
    A = Amatrix(ReactivityFractionOfBeta); 
    [M, D] = eig(A); 
    ExpDTau = diag(exp(diag(D)*Tau),0); 
    ExpATau = M*ExpDTau/M;   % '/' Right multiplies by the inverse of M. 
    AinvS = A\S;     % '\' Left multiplies by the inverse of A. 
    X_hist(:,1) = Xo(); % Copies vector Xo into the first col of X_hist. 
    I = eye(7);  % This is a 7x7 unit matrix. 
    G = I; 
    for Step = 1:HistoryLength-1 
        G = ExpATau*G; 
        X_hist(:,Step+1)= G*Xo+(G-I)*AinvS; 
    end 
    figure 
    plot(T_hist,log10(X_hist(1,:)),'r') 
    title('Log Fission rate vs. Time (sec)'); 
    xlabel("Time Isec)") 
    figure 
    plot(T_hist,log10(X_hist(2:7,:)./Xo(2:7)),'r') 
    title('Log Normalized Precursor Concentrations vs. Time (sec)'); 
    xlabel("Time (sec)") 
end 
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Subcritical Multiplication 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider a shutdown reactor.  Subcritical multiplication is the process 
whereby source neutrons make up for the losses in the fission chain.  
When the reactor is shutdown the Keff is < 1 so neutrons are lost on 
each trip around the loop.  The number can be made constant with an 
injection of neutrons from non-fission sources. 
 
The delayed neutron part of the cycle is not presented here because we 
are in a virtual steady state. The steady state condition is: 
𝑁H"$I8J	H"I"$ = 𝐾$%%𝑁H"$I8J	H"I"$ + 𝑆Δ𝑡 
The above equation may be rearranged as  

Keff Nt 

Nf 

Nt Ni 

SΔ𝑡 
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𝑁H"$I8J	H"I"$ =	
𝑆Δ𝑡

1 − 𝐾$%%
 

Now once again 

Λ = 	
Δ𝑡
𝐾$%%

 

 
So  
    	

𝑁H"$I8J	H"I"$ =	
−𝑆Λ

1 − 1/𝐾$%%
=	
−𝑆Λ
𝜌

= 	
𝑆Λ
|𝜌|

 

 
The addition of a source impacts the first reactor kinetics equation as 
follows: 
 

𝑑𝑛(𝑡)
𝑑𝑡

= 	
𝑛(𝑡) ∗ (r− b)

L
+Hl,𝐶,(𝑡) + 𝑆

0

,/*

 

 
Here the value of S is in units of neutron density rate of change due to 
sources.  If there were no n(t) nor precursors at t= 0, S is the rate at 
which fission rate would start to increase.  
 
 
Where do source neutrons come from? 
 
For a core that has been operated, the primary source of neutrons is the 
reaction 𝐻*' +	𝛾&& 	→ 	𝐻** +	𝑛&*.  This gamma must have at least 2.23 
MEV.  These high energy gammas come from a relatively small number 
of fission product decay chains.  There is a rapid reduction in this source 
over the first day after shutdown.  Following that the level will reduce 
with a 12.8-day half-life due to Ba140 to La140 fission product decay. 
Following this, after several months, decay is controlled by other 
isotopes with half-lives of approximately one year. 
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In many reactors other sources of neutrons are installed to provide a 
visible count rate on the Source Range Instruments. 
 
There also natural sources of neutrons including cosmic rays, 
spontaneous fission, and certain internal core (𝛼, 𝑛) reactions. The last of 
these will vary based on the specifics of the fuel being used. 
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4. The Prompt Jump Assumption and Related Solutions of the Kinetics 
Equation 

 
The reactor kinetics differential equations bring significant difficulty. 
This difficulty stems from the range of the eigenvalues of the A matrix.  
If the reactivity is 0.1𝛽, we have the following eigenvalue set.   These 
all have units of inverse time in seconds. 
    

-116.5533 -2.8879 -1.0094 -187.7195e-3 
-62.7713e-3 10.1868 e-3 -13.8297e-3  

 
The ultimate use of these numbers is to be multiplied by time and placed 
in exponentials.  The first number here is a problem.  Its related term 
decays rapidly, which can lead to computational issues.  It develops that 
this problem traces to the use of the generation time in our differential 
equations.  The step size needed to integrate it is much less than would 
be required for the other eigenvalues. 
 

89(")
8"

=	 (<=	>)9(")
?

+	∑ 𝜆,	𝐶,	0
,/* + S 

𝑑𝐶,(𝑡)
𝑑𝑡

= 	
𝛽,
Λ
	𝑁(𝑡) −	𝜆,	𝐶,	 

 
One solution is to approximate these equations by replacing the first 
with another equation with Λ 89(")

8"
	 set to zero.  Doing so introduces 

error, but it will develop that the error is small so long as we do not have 
rapid jumps in reactivity and that the reactivity is well below 𝛽.	  We 
will handle jumps in reactivity as a discontinuity in the fission rate 
(recognizing that this is non-physical).   This approximation is called the 
“Prompt Jump Assumption”. 
 
The first equation then becomes: 
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𝑁(𝑡) = 	Λ(/𝜆" 	𝐶" + 𝑆)/(𝛽 − 	𝜌)
,

"-.

 

 
If we pose an examination of a sudden step change in reactivity.  We 
realize that the number of precursors is continuous.  The fission rate 
would be continuous if we did not make the prompt jump assumption.  
However, fission rate becomes discontinuous. 
 

−	
(𝜌(0=) − 	𝛽)𝑁(0=)

Λ
= 	H𝜆,	𝐶,(0=) + 𝑆

0

,/*

 

−	
(𝜌(0K) − 	𝛽)𝑁(0K)

Λ
= 	H𝜆,	𝐶,(0K) + 𝑆

0

,/*

 

 
The two right sides are the same because C’s and S are continuous so 

𝑁(0K) = 	𝑁(0=) l
𝛽 − 𝜌(0=)
𝛽 − 𝜌(0K)

m 

 
Or for an initially critical reactor with a step of reactivity this becomes 
the following: 
 

𝑁(0K) = 	𝑁(0=) l
𝛽

𝛽 − 𝜌m
 

 
If we return to the plots that we showed above for fission rate transients. 
Step changes in reactivity both up and down produced a rapid change in 
the fission rate followed by a slow rise or fall depending on the sign of 
the reactivity change.  What we have done with this assumption is to 
close the time for that initial rise or fall, down to zero. 
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Understanding the Prompt Jump 
 

1. When Keff is changed the inner prompt cycle N starts to rise.   
2. The number of neutrons coming from the decay of precursors is 

not yet changing. The number of neutrons being lost from the cycle 
Nd is going up as the inner loop number is going up. 

3. A quasi-steady state happens when the losses from the loop due to 
the precursor production is equal to the gains coming across Keff.  
After that fission rate only rises as the precursor decay rate 
increases. 

 
 
 
 
  Keff 

Ci 

Nt Nd 

Nf Ndecay 

Np Ni 
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5. Computational Consequence of the Prompt Jump Approximation 
 
We set the left-hand size of the of the following equal to zero and solve 
for n(t): 
 

𝑑𝑛(𝑡)
𝑑𝑡 = 	

𝑛(𝑡) ∗ (r− b)
L

+/ l"𝐶"(𝑡) + 𝑆
,

"-.

 

 
We start with the fission rate and full precursor equations: 
 
 

𝑁(𝑡) = 	Λ(H𝜆,	𝐶,	 + 𝑆)/(𝛽 − 	𝜌)
0

,/*

 
𝑑𝐶,(𝑡)
𝑑𝑡

= 		
𝑁(𝑡) ∗ b,

L
−	l,𝐶,(𝑡) 

 
 
 
We can write the precursor differential equations in matrix form 
imbedding the fission rate equation directly as the production term 
involving N(t). 
 
   

dC01*

dt
= 𝐴𝑝𝑗010C01* + B01* 

 
 

𝐶(𝑡) =
&

&

𝐶!
𝐶"
𝐶#
𝐶$
𝐶%
𝐶&

&

&
 𝐶𝑜(0) =

&

&

𝛽! 𝜆!⁄
𝛽" 𝜆"⁄
𝛽# 𝜆#⁄
𝛽$ 𝜆$⁄
𝛽% 𝜆%⁄
𝛽& 𝜆&⁄

&

&𝑁'/)
Λ  𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡
𝛽!
𝛽"
𝛽#
𝛽$
𝛽%
𝛽&⎦
⎥
⎥
⎥
⎥
⎤

5
𝑆

𝛽 − 𝜌9 

𝐴𝑝𝑗 = 5
1

𝛽 − 𝜌9 &

&

𝛽!𝜆! − 𝜆!(𝛽 − 𝜌) 𝛽!𝜆" 𝛽!𝜆# 𝛽!𝜆$ 𝛽!𝜆% 𝛽!𝜆&
𝛽"𝜆! 𝛽"𝜆" − 𝜆"(𝛽 − 𝜌) 𝛽"𝜆# 𝛽"𝜆$ 𝛽"𝜆% 𝛽"𝜆&
𝛽#𝜆! 𝛽#𝜆" 𝛽#𝜆#*+#(-*.) 𝛽#𝜆$ 𝛽#𝜆% 𝛽#𝜆&
𝛽$𝜆! 𝛽$𝜆" 𝛽$𝜆# 𝛽$𝜆$ − 𝜆$(𝛽 − 𝜌) 𝛽$𝜆% 𝛽$𝜆&
𝛽%𝜆! 𝛽%𝜆" 𝛽%𝜆# 𝛽%𝜆$ 𝛽%𝜆% − 𝜆%(𝛽 − 𝜌) 𝛽%𝜆&
𝛽&𝜆! 𝛽&𝜆" 𝛽&𝜆# 𝛽&𝜆$ 𝛽&𝜆% 𝛽&𝜆& − 𝜆&(𝛽 − 𝜌)

&

&
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As before, assuming the reactivity is constant, this equation has a 
solution: 
 

𝐶(𝑡) = 𝑒BLMC𝐶(0) + 𝑒BLMCs𝑒=EN@"'B
"

&

d𝑡- 

Note: The shutdown equilibrium condition is that OP
OC

 is zero.  In that case 
𝐶, = 𝛽,𝑁H/Q/Λ𝜆,	. Substituting, into 0 = 𝐴𝑝𝑗C + B yields the expected 
shutdown equilibrium equation: 𝑁H/Q =	−

H?
<

.  From a computational 
perspective this is superior to the full seven-dimensional system.  The 
eigenvalues of the P matrix do not exhibit the wide variation found in 
the full kinetics equation solution. For a critical reactor the full kinetics 
eigenvalues range from zero to -129.4 sec-1.  For this case, the values 
range from zero to -2.9 sec-1. 
 
Comparison of the full kinetics solution with the prompt jump 
approximation solution. Reactivity = 0.25𝛽 for 1 sec. 
 

  
 
 
Comparison of Full Kinetics solution and Prompt Jump 
Approximation following a step insertion of Reactivity. 



 36 

Reactivity 
(fraction of 𝛽) 

Percent Error 
1 Second 

Percent Error 
20 Seconds 

0.01 0.00435691 0.00438015 
0.05 0.0238797 0.0256779 
0.1 0.0538971 0.0634204 
0.2 0.140564 0.20239 
0.3 0.285914 0.519591 
0.4 0.544648 1.28996 
0.5 1.04626 3.33663 
0.6 2.15068 9.63026 
0.7 5.13245 35.6158 
0.8 16.8672 298.031 

 
As expected, the prompt jump assumption solution falls apart as the 
reactivity approaches the value of 𝛽 . In the region less than 40% of 𝛽 
the prompt jump approximation is strong.  Real operating reactors 
usually limit reactivity to less than this value. 40% of 𝛽 would yield a 
steady state SUR of about 3 DPM.  20% of 𝛽 yields about 1 DPM.  
 
The computation approach for the prompt jump assumption cases uses 
the same method as was used for the full kinetics approach.  This takes 
full advantage of the non-changing value of the system matrix to allow 
its computation only once.  Once again, we define a matrix G which is 
recursively modified for each time step. 
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Computation for a Reactivity Step using the Prompt Jump Assumption 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% SimplePowerPJ.m 
% W.N. Locke 
% May 2025 
% Step response to a step at time 0. Initial fission rate normalized to 1. 
% Example call: SimplePower(0.25,1) 
% This will plot the 1 second transient with reactivity equal 
% to 0.25*Beta 
function SimplePowerPJ(ReactivityFractionOfBeta,TimeInterval) 
    So = 2.0e-5; % Source Rate  normalized for a unit initial fission rate. 
    Tau = 1.0e-4; % Time step duration in seconds. 
    T_hist = 0:Tau:TimeInterval; 
    HistoryLength = length(T_hist); 
    C_hist = zeros(6,HistoryLength); 
    N_hist = zeros(1,HistoryLength); 
    N_hist(1) = 1; 
    Betas = ... 
        [0.00021;0.00141;0.00127;0.00255;0.00074;0.00027]; 
    BetaTotal = sum(Betas); 
    Lambdas = ... 
       [0.01246403;0.03052863;0.11141479;0.30130435;1.13606557;3.01304348]; 
    GenerationTime = 5.0e-5; 
    Co = [Betas./(Lambdas*GenerationTime)]; 
    function APJ = AmatrixPJ(ReactivityFraction) 
            APJ = Betas*Lambdas'; 
            D = diag(Lambdas)*BetaTotal*(1-ReactivityFraction); 
            APJ = (APJ - D)/(BetaTotal*(1-ReactivityFraction)); 
    end 
    Apj = AmatrixPJ(ReactivityFractionOfBeta); 
    [M, D] = eig(Apj); 
    ExpDTau = diag(exp(diag(D)*Tau),0); 
    ExpATau = M*ExpDTau/M;   % '/' Right multiplies by the inverse of M. 
    rf = 1/(BetaTotal*(1-ReactivityFractionOfBeta)); 
    B = Betas*So*rf;      
    ApjinvB = Apj\B; 
    C_hist(:,1) = Co(); % Copies vector Co into the first col of X_hist. 
    I = eye(6);  % This is a 6x6 unit matrix. 
    G = I; 
    for Step = 1:HistoryLength-1 
        G = ExpATau*G; 
        C_hist(:,Step+1)= G*Co+(G-I)*ApjinvB; 
        N_hist(Step+1) = ... 
            GenerationTime*rf*(dot(Lambdas,C_hist(:,Step+1))+So); 
    end 
    figure 
    plot(T_hist,log10(N_hist(1,:)),'r') 
    title('Log Power vs. Time (sec)'); 
    xlabel("Time Isec)") 
    figure 
    plot(T_hist,log10(C_hist(1:6,:)./Co(:)),'r') 
    title('Log Normalized Precursor Concentrations vs. Time (sec)'); 
    xlabel("Time (sec)") 
end 
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Ramp Reactivity Additions 
 
So far, our study of reactor kinetics has assumed a linear time-invariant 
system, allowing us to use the integrating factor in solving the kinetics 
equations. We treated A as constant, moving it in and out of derivatives 
or integrals. However, when reactivity changes, A varies over time. This 
complicates our approach. We can still write the point reactor kinetics 
equations, but now A and other variables depend on both time and the 
solution X or C. 
 

dX./+

dt
= A./.X./+ + 𝑆./+	 dC01*

dt
= 𝐴𝑝𝑗010C01* + B01* 

	
 
Prior to the days when computer and computational capabilities became 
ubiquitous people put significant effort into solving the case where 𝜌(𝑡) 
was a simple linear function of time.  The solutions involved esoteric 
tabulated functions and brought little practical help. 
 
For example, one case is a ramp with only one delayed neutron group 
being considered.  Further the reactivity ramp rate,𝛾, is constrained to be 
exactly 𝜆𝛽.  This yields the following. 
 
 

𝑛(𝑡)
𝑛&

=
𝛽0

𝛾Λ
Q𝑒#7%

−
𝛽 − 𝛾Λ − 𝛾t

𝛽
exp T

𝛾
2Λ

𝑡0 −
𝛽
Λ
𝑡V 𝑋 W1

+ 𝛽 T
𝜋
2𝛾Λ

V
+/0

exp	(
(𝛽 − 𝜆Λ)0

2𝛾Λ
) Zerf Z

𝛽 − 𝛾Λ
]2𝛾Λ

^

− erf Z
𝛽 − 𝛾Λ − 𝛾t
]2𝛾Λ

^^_` 

 
Here the erf function is defined as: 
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erf(𝑥) = 	s 𝑒=R(𝑑𝜉
1

&
 

 
Reference: Dynamics of Nuclear Reactors, David L. Hetrick, University 
of Chicago Press, 1971. 
 
This tells the story.  We are given the simplest of changing reactivities 
and we are forced into depilating assumptions which will make our 
numbers too far in error to be of value.  One can certainly not place this 
limit on the reactivity addition rate. It is also clear that the vast 
manipulation needed to arrive at this result will not enhance our 
understanding of the physics present.  We also understand that 
computation with the one delayed group model is just wrong. 
 
The solution to this dilemma is to turn to numerical approximation in 
solving the reactor kinetics equations.  The full 7x7 formulation of the 
problem is difficult because of the wide variations of the eigenvalues of 
the A matrix.  We will use the prompt jump approximation 6x6 
representation of the system. In so doing, we require the reactivity to be 
maintained well below 𝛽. 
 
In this section we introduce the “startup rate”. This is the number of 
decades of fission rate change per minute (DPM).  This quantity will be 
discussed at length in the next section. We define it as: 
 

𝑆𝑈𝑅 = 	26.06(𝑑𝑝𝑚 − sec)
𝑑𝑃/𝑑𝑡
𝑃

 

 
We will now look at the entire computation associated with this transient 
using numerical methods with MATLAB.  One could use either Python 
or Julia with similar effort. The rod motion starts at “StartTime”, and has 
a duration, “PullInterval”. The rod speed is defined as follows: 
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𝑅𝑜𝑑𝑆𝑝𝑒𝑒𝑑 =
𝐹𝑖𝑛𝑎𝑙𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝐵𝑒𝑡𝑎

𝑃𝑢𝑙𝑙𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
 

 
With this the reactivity can be found as follows:  
 
function Rho = Reactivity(t) 
        if t < StartTime 
            Rho = 0.0; 
        elseif t < PullInterval+StartTime 
            Rho = RodSpeed*(t-StartTime); 
        else 
            Rho = RodSpeed*PullInterval; 
        end 
end 

 
 
We will find a history of the precursor concentrations and from this we 
can compute fission rate, startup rate, and the effective precursor decay 
constant.  The effective decay constant is a weight average time constant 
defined as follows: 

𝜆.//(𝑡) =
∑ 𝜆(𝐶((𝑡)0
(1#
∑ 𝐶(0
(1# (𝑡)

 

 
The prompt jump approximation Apj matrix is developed as follows. 
 
function APJ = AmatrixPJ(ReactivityFraction) 
        APJ = Betas*Lambdas'; 
        D = diag(Lambdas)*BetaTotal*(1-ReactivityFraction); 
        APJ = (APJ - D)/(BetaTotal*(1-ReactivityFraction)); 
End 
 
 

 “diag” creates a diagonal matrix from the Lambdas vector.  
Betas*LambdasTranspose creates the outer product of these two vectors 
resulting in a matrix 𝛽,𝜆@ , “i” is the row and “j” is the column. The “ ’ ”  
causes a transpose. 
 
The B(t) vector is formed by the following: 
function Bvector = B(Rho) 
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        Bvector = Betas*So/(BetaTotal*(1-Rho)); 
end 

 
The source rate is  𝑆& = 1.0𝑒 − 8. 
 
With these devices the ode target function is: 
 
function dCdt = TargetFunction(t,C) 
        Rho = Reactivity(t); 
        A = AmatrixPJ(Rho); 
        dCdt = A*C+B(Rho);  
end 

 
The initial state of the precursors vector is Co 
 
Co = Po*Betas./(Lambdas*GenerationTime); 

 
Given this the precursor differential equations are solved in three lines: 
 
span = [0,TotalTime]; 
opts = odeset(RelTol=1e-9,AbsTol=1e-10); 
[T_hist,C_hist] = ode23t(@TargetFunction,span,Co,opts); 

 
Once the history of precursor concentrations has been developed the 
fission rate, 𝜆$%%, and startup rate are computed directly. 
 
for k=1:Num  
     Rho = Reactivity(T_hist(k)); 
     C = C_hist(k,:); 
     P_hist(t) = GenerationTime*dot(Lambdas,C)/(BetaTotal*(1-Rho)); 
     LambdaEff_hist(k) = dot(C,Lambdas)/sum(C); 
end 
% This implements SUR = 26.06 dpm-sec (dP/dt)/P 
SUR_hist = 26.06*diff(P_hist)./(diff(T_hist).*P_hist(2:end)); 
 

 
Note that the startup rate history is being computed as a vector 
calculation.  The diff() function takes the difference between adjacent 
values. And the “./” operator causes each element of the numerator 
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vector to be divided by each element of the denominator vector. 
Likewise, the “.*” operator indicates element by element multiplication. 
The diff function produces a vector of length one less than the length of 
its argument. 
 

Rho = 0.25, Initial Fission rate = 1.0 
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Rho = -1, Initial Fission rate = 1.0 
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We have used the prompt jump assumption for these calculations.  The 
following graph demonstrates the errors that result from this approach 
compared to a full kinetics calculation.  The plot shows the percent error 
in the final fission rate reached after a 200 second transient using a ten 
second start time, a ten second rod pull, followed by a 180 second wait.  
The reactivity at each point is what remained after each rod pull. A total 
of 1000 transients were used to create this plot. 
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Full MATLAB Program for Computing a 
Ramp Reactivity Insertion 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ReactivityRampODEPJ.m 
% W.N. Locke 
% April 17, 2025 
% Step response to a step at time 0. 
% Example call: RampFission RateSUR( 
%   FractionOfBeta, ... 
%   Start Time,... 
%   PullInterval,... 
%   TotalTime 
%   ); 
% 
% The first will plot the 100 second transient with reactivity equal 
% to 0.25*Beta. The second will plot a shutdown 
% 
function ReactivityRampODEPJ() 
     
    TReactivityRampODEPJ(0.25,10,50,200) 
   % TReactivityRampODEPJ(-5,10,100,2000) 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Global Generation Time 
function TReactivityRampODEPJ(... 
    FinalReactivityFractionOfBeta,... 
    StartTime,... 
    PullInterval,... 
    TotalTime ... 
    ) 
    Lambdas = ... 
       
[0.01246403;0.03052863;0.11141479;0.30130435;1.13606557;3.01304348]; 
    Betas =[0.00021;0.00141;0.00127;0.00255;0.00074;0.00027]; 
    BetaTotal = sum(Betas); 
    GenerationTime = 5.0e-5; 
    So = 1e-8; 
     
    RodSpeed = FinalReactivityFractionOfBeta/PullInterval; 
     
    no = 1; 
     
    function Rho = Reactivity(t) 
        if t < StartTime 
            Rho = 0.0; 
        elseif t < PullInterval+StartTime 
            Rho = RodSpeed*(t-StartTime); 
        else 
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            Rho = RodSpeed*PullInterval; 
        end 
    end 
     
    function Bvector = B(Rho) 
        Bvector = Betas*So/(BetaTotal*(1-Rho)); 
    end 
 
    function APJ = AmatrixPJ(ReactivityFraction) 
        APJ = Betas*Lambdas'; 
        D = diag(Lambdas)*BetaTotal*(1-ReactivityFraction); 
        APJ = (APJ - D)/(BetaTotal*(1-ReactivityFraction)); 
    end 
    function n = FissionRate(C,Rho)    
        n = GenerationTime*dot(Lambdas,C)/(BetaTotal*(1-Rho)); 
    end 
    function dCdt = TargetFunction(t,C) 
        Rho = Reactivity(t); 
        A = AmatrixPJ(Rho); 
        dCdt = A*C+B(Rho);  
    end 
    
     Co = no*Betas./(Lambdas*GenerationTime); 
     span = [0,TotalTime]; 
     opts = odeset(RelTol=1e-9,AbsTol=1e-10); 
     [T_hist,C_hist] = ode23t(@TargetFunction,span,Co,opts); 
     Num = length(T_hist); 
     LambdaEff_hist=zeros(1,Num);  
     n_hist = zeros(Num,1); 
     Rho_hist= zeros(Num,1); 
     for k=1:Num  
         C = C_hist(k,:); 
         LambdaEff_hist(k) = dot(C,Lambdas)/sum(C); 
         Rho_hist(k) = Reactivity(T_hist(k)); 
         n_hist(k) = FissionRate(C,Rho_hist(k));  
     end 
     SUR_hist = 26.06*diff(n_hist)./(diff(T_hist).*n_hist(2:end)); 
     
PlotKineticsData(Num,T_hist,n_hist,LambdaEff_hist,SUR_hist,Rho_hist)  
end 
 
function PlotKineticsData(... 
    Num,T_hist,... 
    n_hist,... 
    LambdaEff_hist,... 
    SUR_hist,... 
    Rho_hist... 
    ) 
        figure; 
        plot(T_hist,Rho_hist); 
        title('Reactivity vs. Time (sec)','FontSize',16); 
        ylim([1.1*min(Rho_hist),1.1*max(Rho_hist)]) 
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        grid on; 
        xlabel("Time (Sec)",'FontSize',14); 
        ylabel("Rho/Beta",'FontSize',14); 
        figure; 
        plot(T_hist,log10(n_hist)); 
        title(... 
          'Log Prompt Jump ODE Fission Rate vs. Time 
(sec)','FontSize'... 
          ,16); 
        grid on; 
        xlabel("Time (Sec)",'FontSize',14); 
        ylabel("log10(P/Po)",'FontSize',14); 
        figure 
        plot(T_hist,LambdaEff_hist,'r'); 
        title('Prompt Jump ODE Lambda eff vs. Time 
(sec)','FontSize',16); 
        xlabel("Time (Sec)",'FontSize',14) 
        ylabel("1/Sec",'FontSize',14) 
        grid on; 
        figure 
        plot(T_hist(2:end),SUR_hist,'r'); 
        title('Prompt Jump ODE Sur vs. Time (sec)','FontSize',16); 
        xlabel("Time (Sec)",'FontSize',14) 
        ylabel("Decades per Minute",'FontSize',14) 
        grid on; 
        fprintf("Number of Iterations: %d\n",Num) 
        fprintf("Final ODE Lambda: %f\n",LambdaEff_hist(Num)) 
        fprintf("Final ODE SUR: %f\n",SUR_hist(end)) 
        fprintf("Final Log10 ODE Fission Rate: %g\n",log10(n_hist(end))) 
end 
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The concept of startup rate and the related equations 
 
Early in reactor development it became evident that both the protection 
equipment and operators need information related to the rate at which 
fission rate changes.  In simple form the kinetics equations have 
exponential solutions. This led people to think of a “reactor period”, the 
time it takes for fission rate to change by a factor of “e”.  This measure 
can however be confusing because a steady state period is infinite.  The 
next step is to consider an inverse period 1 τx , so fission rate is changing 
as 𝑛(𝑡) = 𝑛(0)𝑒" GS .  And we could display 1 τx  .		Beyond this however, 
the industry generally objected to being asked to think in fission rates of 
“e”. The choice was to change the equation to a base ten and to convert 
the resulting rate expression to units of per minute rather than per 
second.  τ itself is in units of seconds so the conversion is as follows 
n(t) = n(0)10∫ UVW(C')[*+,-.+//123]OC'[123]

5
6 .  Using this idea 𝑆𝑈𝑅 =

	𝑙𝑜𝑔*&(𝑒) ∗
0&Y 7!89#:Z

G[7!8]
	= 26.06 [DPM-sec]/	τ[\$]].  Further, using a simple 

idea related to a decay equation the period may be defined as 𝜏 ≡ _(")
_̇(")

  
With this definition the  
 

𝑆𝑈𝑅 = 26.06	[𝐷𝑃𝑀 − 𝑠𝑒𝑐] ∗ _̇(")
_(")

. 
 
Alternately, this is also used in the following form within protection and 
control equipment: 

S𝑈𝑅 = 26.06	[𝐷𝑃𝑀 − 𝑠𝑒𝑐] 8
8"
(ln 𝑛(𝑡)) 

 
The equation  𝑆𝑈𝑅 = 26.06	[𝐷𝑃𝑀 − 𝑠𝑒𝑐] _̇(")

_(")
 may be directly used 

with a stream of digital data representing n(t).  For example, in simplest 
form this could be: 𝑆𝑈𝑅 = 26.06	[𝐷𝑃𝑀 − 𝑠𝑒𝑐](_("K∆")=_(")

∆"∗_("K∆")
) . With real 

plant data this method could present problems due to electrical noise.  
The best approach would be to apply digital filtering to the samples prior 
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to computing the difference.  Digital sampling theory could also be used 
to combine the difference with the filtering. 
 
The SUR equation 
 
We proceed by forming an expression for  
 

𝑆𝑈𝑅 = 26.06	[𝐷𝑃𝑀 − 𝑠𝑒𝑐] ∗
𝑛̇(𝑡)
𝑛(𝑡)

 

 
 
This SUR equation is a tool used throughout the nuclear industry as a 
training aid. The equation is usually derived making the following 
assumptions: 
• Point Kinetics is adequate to represent the reactor. 
• The prompt jump assumption is used Λ 89

8"
≈ 0 and the reactivity is 

significantly less than 𝛽. 
• The delayed neutron precursors are placed into a single group with 

one effective decay constant. 
• Sources denoted by S are constant in time. 

 
The first two assumptions are acceptable from the standpoint of normal 
operations.  The third is not, it leads to significant error in the numbers 
computed by the resulting equation.   
 
Define: 𝜆$%% = ∑ l,𝐶,(𝑡)0

,/* /∑ 𝐶,(𝑡)0
,/* 	. We plotted this value in our 

ramp transient example plots above.  Also recall that b	 = 	∑ b,
0
,/* . 

 
We will proceed using the first two assumptions and the one delayed 
group assumption. However, we will consider that the group decay 
effective 𝜆$%% has a time derivative.  This leads to an interesting 
correction to the SUR equation. 
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The original point kinetics equations are as follows: 
 

𝑑𝑛(𝑡)
𝑑𝑡

= 	
𝑛(𝑡)(r− b)

L
+Hl,𝐶,(𝑡)

0

,/*

+ 𝑆 

 
𝑑𝐶,(𝑡)
𝑑𝑡

= 		
𝑛(𝑡)b,
L

−	l,𝐶,(𝑡) 
 
The one delayed group approximations and prompt jump assumptions 
convert these as follows using the dot notation for the time derivative. 
 

𝑛(𝑡) = 	
l$%%𝐶(𝑡)L+ 𝑆L

b− r
 𝐶(𝑡) =H𝐶,(𝑡)

0

,/*

 

𝐶̇(𝑡) = 		
𝑛(𝑡)b
L

−	l$%%𝐶(𝑡) 
 

l$%%𝐶(𝑡) =Hl,𝐶,(𝑡)
0

,/*

 

 
	 

 
 
Rearrange the first of these by clearing the denominator to the 
left-hand side and perform an implicit derivative, we obtain. 
 

𝑛̇(𝑡)(b− r) − 	𝑛(𝑡)ṙ 	= 	l$%%̇ 𝐶(𝑡)L+ l$%%𝐶(𝑡)̇ L 
 
Now observe the following rearrangements of the above equations 

l$%%𝐶(𝑡)L	 = 	𝑛(𝑡)(b− r) − 	𝑆L 
𝐶(𝑡)̇ L	 = 	𝑛(𝑡)b	 − 	l$%%𝐶(𝑡)L = 	𝑛(𝑡)r	 + 	𝑆L 

 
Substituting these equations in the implicit derivative we have the 
following 
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𝑛̇(𝑡)(b− r) − 	𝑛(𝑡)ṙ 	

= 	
l$%%̇
l$%%

[𝑛(𝑡)(b− r) − 	𝑆L] + l$%%(𝑛(𝑡)r	 + 	𝑆L) 

 
So, we have an expression for 𝑛̇(𝑡)/	𝑛(𝑡) which is 1/𝜏. 
 

𝑛̇(𝑡)
𝑛(𝑡)

=
ṙ+

l$%%̇
l$%%

[(b− r) −	 𝑆L𝑛(𝑡)] + l$%%(r	 + 	
𝑆L
𝑛(𝑡))

(b− r)
 

 
Case SUR Equation 
𝑆	 ≠ 0 
l!""̇ ≠ 0 

𝑆𝑈𝑅 = 26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐]
ṙ+

l!""̇
l!""

[(b− r) −	 𝑆L𝑛(𝑡)] + l!""(r	 + 	
𝑆L
𝑛(𝑡))

(b− r)  

 
𝑆 = 0 

l!""̇ ≠ 0 𝑆𝑈𝑅 = 26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐] :
ṙ+ l!""r	
(b− r) +

l!""̇
l!""

; 

 
𝑆	 ≠ 0 
l!""̇ = 0 𝑆𝑈𝑅 = 26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐]

ṙ+ l!""(r	 + 	
𝑆L
𝑛(𝑡))

(b− r)  

 
𝑆 = 0 

l!""̇ = 0 𝑆𝑈𝑅 = 26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐]
ṙ+ l!""r	
(b− r)  

 
 
The last of these is what is commonly known as the startup rate 
equation. 
 

𝑺𝑼𝑹 = 𝟐𝟔. 𝟎𝟔	[𝒅𝒑𝒎 − 𝒔𝒆𝒄]
ṙ + l𝒆𝒇𝒇r	
(b − r)  

 
The results of this equation may be effectively corrected with the 

adjustment provided by adding  
l𝒆𝒇𝒇̇

l𝒆𝒇𝒇
   so long as the reactivity is much 

less than b.   
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Aside –  SUR for a Sudden Insertion of Reactivity 
 
If we do not set L $/(')

$'
= 0   

𝑑𝑛(𝑡)
𝑑𝑡

= 	
𝑛(𝑡) ∗ (r− b)

L
+Hl,𝐶,(𝑡)

0

,/*

 

 
However, we can easily compute the initial SUR of a prompt critical 
reactor.  
 
 Consider a steady state reactor such that l$%%𝐶(0) = b	𝑛(0)/L. Now 
assume we step a reactivity just equal to b.  Prior to the precursor 
concentrations changing the first reactor kinetics becomes: 
 
;<(%)
;%

= 	𝜌	𝑛(0)/L  which yields a 𝑆𝑈𝑅 = 26.06	 ;<(%)
;%

/𝑛(𝑡) = 26.06	𝜌	/L. 
 
If L	 = 50	𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠	this will yield 3336 DPM. 
This is a six group full kinetics sur solution for a step of constant 
reactivity equal to b.  
 

 

 
Typical Example Problem using the SUR equation 
 



 53 

Using this equation suppose we start from steady state and pull rods for 
15 seconds. The final reactivity is 0.25b.  Plot the SUR transient and 
fission rate.  Also assume b	 = 	640𝑝𝑐𝑚	𝑎𝑛𝑑	l$%% = 0.1 *

\$]
. 

 
While pulling ṙ = &.'(b

*(bcd
=		 (5/300)b 

 
Before Rods Move SUR=26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐] #$(#.'	'/ *+,)#	

('.#)
 0.000 DPM 

Rods Start Moving SUR=26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐] //0##	/1!2$(#.'	'/ *+,)#	
('.#)

 0.43 DPM 

Rods Finish Just 
before stopping 

SUR=26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐] //0##	/1!2$(#.'	'/ *+,)#.3/
('.#.3/)

 1.45 DPM 

After Rods Stop SUR=26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐] #.#	/1!2$(#.'	'/ *+,)#.3/	
('.#.3/)

 0.87 DPM 

 
The following plots demonstrate this calculation compared with a six 
delayed neutron group calculation. The fission rate is plotted. The 
kinetics equation results computed, and the SUR equation results are 

plotted. And the computed l$%%	𝑎𝑛𝑑	
l𝒆𝒇𝒇̇

l𝒆𝒇𝒇
 are plotted.  Finally, the 

reactivity transient is plotted. 
 
Plotting Power For a Varying Startup Rate 
 
We often plot the log10(n(t)/n(0)) along with the startup rate plots.  With a 
varying SUR(t) the power is given by the following: 
 

n(t) = n(0)10∫ 567(8')["#$%&#'/)*+]:8'[)*+]-
.  

So, when plotting log10(n(t)/n(0)) we are simply plotting ∫ SUR(t')dt'"
& . This is 

the area under the startup rate curve. Take care here with the units of time.  SUR is 
given in per minute.  So, if we want the left-hand side of this equation in seconds, 
we will need to make a time conversion as follows. 

n(t) = n(0)	10∫ 567(8')["#$%&#'/)*+]
-
.

dt'[*+,]

60	[sec/min] 
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There are significant differences between the computed SUR and the 
values coming from the SUR equation.  If we replot this using the 

equation which is corrected by the term l!""
̇

l!""
  we get the following: 
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Clearly the problem here is that it is not easy to know the value of the 

ratio l!""
̇

l!""
   unless we are doing a full six group calculation as we are 

here.  Therefore, people use the simplified equation to get an idea of the 
nature of the transient even while the numbers are incorrect.  
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Power Turning 
 
Examine the second part of the transient shown in the previous two 
figures.  The fission rate turns (the SUR is zero) well before the 
reactivity is back to zero.  The numerator of the SUR equation is ṙ+
l$%%r. The fission rate turns when this sum is zero.  The negative  ṙ is 
forcing this to happen.   
 
There are two contributions to the rate of change of fission rate, one is 
the rate of change of the prompt cycle neutrons, the other is the rate of 
change of the precursor concentrations. Ignoring S and l$%%̇  
 

𝑛̇(𝑡) 	= 	
𝑛(𝑡)ṙ
(b − r)

+	
l.//𝐶(𝑡)̇ L	
(b − r)

	 

 
Because we found 𝐶(𝑡)̇ L	 = 	𝑛(𝑡)r, we know that a positive reactivity 
will always indicate that the precursor concentrations are going up.  But 
the negative ṙ	 will mean the prompt cycle is lowering. Fission rate turns 
when the two effects sum to zero. 
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How much reactivity is in the core at the time that fission rate turned 
using the SUR equation? 
 

ṙ + l?@@r	 = 0	 

r	 = −
ṙ

l?@@
=	−(−

5
300	sec

)b/(0.1
1
sec

) = 	1/6	b 

 
 

SUR Equation with Source Neutrons 
 

𝑆𝑈𝑅 = 26.06	[𝑑𝑝𝑚 − 𝑠𝑒𝑐]
ṙ+ l!""(r	 + 	

𝑆L
𝑛(𝑡))

(b− r)  

 
 

Notice that this form gives the same equation as we derived for the 
steady state fission rate in a shutdown reactor with sources present.  The 
steady state fission rate is inversely proportional to reactivity and 
directly proportional to 𝑆L. 
 
Additional Examples of Kinetics transients with fission rate below the 
point of adding heat. 
 

Keff 

Ci’s 

Nt Nd 

Nf Ndecay 

Np 
Ni 
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This is a reactor startup as a sequence of rod withdrawals.  
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This is a close-up of a rod withdrawal when there remains a great deal of 
negative reactivity in the plant.  In this case the fission rate rises only a 
small amount, and the SUR is small and quickly damped. 
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This is a close-up of a rod withdrawal when there remains little negative 
reactivity in the plant.  In this case the fission rate rises much more, and 
the SUR is larger and slowly damped. 
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This is a reactor startup performed with a singular rod pull from -10 beta 
to 0.25 beta.  Discuss this transient.  Why would it trouble you?  The 
final SUR here is again 1 DPM.  
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This is a reactor trip from critical.  Notice that the log of fission rate 
becomes a straight line.  What is the SUR?   Notice the sudden drop in 
fission rate at time zero: 𝑃&K = 𝑃&= <

b

b−r
= = 	 *

'*
𝑃&= = 0.048𝑃&=    

and Log10(0.048) = 	−1.32
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Variation in the Effective Decay Constant 
 
Find leff and Ci(t) in terms of the other quantities if fission rate is on a 
stable period t, N(t) = N0et/t. Here the period is taken as 26.06 [dpm-
sec]/SUR.   
 

dC,
dt

=
𝛽,
𝛬
𝑛(𝑡) − 𝜆,𝐶, 

 
bring the term involving the Ci to the left-hand side of the equation and 
multiply both sides of the equation by 𝑒.#".  This makes the left-hand 
side a total derivative: 
 

𝑑
dt
(𝑒.#"𝐶,) =

𝛽,
𝛬
𝑒.#"K"/F 

 
Integrating this from (0,t) yields: 
 

𝐶,(𝑡) = 𝐶,(0)𝑒=.#" + 𝑒=.#"s
𝛽,
𝛬
𝑒.#"'K"'/Fdt-

"

&

 

 
This becomes: 
 

𝐶,(𝑡) = 𝐶,(0)𝑒=.#" +
𝛽,

𝛬(𝜆, + 1/𝜏)
(𝑒" F⁄ − 𝑒=.#") 

 
But with a stable positive period, all the 𝑒=.#" terms would be small as 
compared to 𝑒" F⁄ : 
 

𝐶,(𝑡) =
>#

f(.#K*/F)
 𝑒" F⁄  

 
Now with  
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𝜆cgg =
� 𝜆,𝐶,(𝑡)

0
*

� 𝐶,(𝑡)
0
*

 

 
We have the following result for the effective delayed neutron fraction 
in terms of the stable positive period: 
 

𝜆cgg =
H 𝜆,

𝛽,
(𝜆,𝜏 + 1)

0

*

H 𝛽,
(𝜆,𝜏 + 1)

)
0

*

								𝜏 = 	
26.06[𝑑𝑝𝑚 − 𝑠𝑒𝑐]

𝑆𝑈𝑅
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Values Computed Assuming a Stable Period 
SUR 

(dpm) 
Effective Decay Constant 

1/sec 
Approximate Reactivity 

as a Fraction of b 
0 0.0771 0 

0.1 0.0833 0.03 
0.5 0.1016 0.13 
1 0.1178 0.22 
2 0.1405 0.34 
5 0.1795 0.52 
10 0.2142 0.65 
100 0.3373 0.95 
170 0.3578 1.0 (Prompt Critical) 

 
Generation Time Assumed to be 5x10-5 sec. 
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Effective decay constant with negative reactivity following a prompt 
insertion of reactivity. Insertion of -1000 b. 
 

 
 
The final value of the effective decay constant is a function of the 
stepped in reactivity 
 

Conclusion 
 
While use of an effective decay constant of unchanging value during 
transients may have some heuristic value in giving people a view of how 
startup rate behaves, it is misleading and will lead to significantly wrong 
answers.  Kinetics analysis really requires a full solution of the 
associated coupled differential equations. 
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Transfer Functions 
 
We looked at transfer functions in our review of Laplace transforms in a 
previous lesson.  Recall that transfer functions only apply in a system 
which initially is in a zero state, and it is unchanging other than the state 
vector.  This will work for us if we consider a system of constant 
reactivity but not if the reactivity is changing in time.  Here we will look 
at two cases where we can meet these requirements. And then we will 
create a system with varying reactivity but approximating the system by 
making small variations.   
 

Source Transfer Function 
 
Consider a sample of fissile material which contains fuel and moderator 
but is not large enough to be a critical mass.  It will likely have a fission 
rate due to neutrons from outside sources, but that total fission rate will 
be assumed to be below anything significant.  We now consider the 
effect of bring a neutron source into proximity with our sample. 
 
 
 dX

dt
= AX + 𝑆 

 

𝑋(𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑛(𝑡)
𝐶'(𝑡)
𝐶3(𝑡)
𝐶0(𝑡)
𝐶=(𝑡)
𝐶/(𝑡)
𝐶>(𝑡)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜌 − 𝛽
𝛬 𝜆' 𝜆3 𝜆0 𝜆= 𝜆/ 𝜆>

𝛽' 𝛬⁄ −𝜆' 0 0 0 0 0
𝛽3 𝛬⁄ 0 −𝜆3 0 0 0 0
𝛽0 𝛬⁄ 0 0 −𝜆0 0 0 0
𝛽= 𝛬⁄ 0 0 0 −𝜆= 0 0
𝛽/ 𝛬⁄ 0 0 0 0 −𝜆/ 0
𝛽> 𝛬⁄ 0 0 0 0 0 −𝜆>⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
𝑆 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
SourceRate

0
0
0
0
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
Take the Laplace transform of this equation and solve for X 
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𝑋 = [	𝑠𝐼 − 𝐴]%#𝑆 
 
Our transfer function is 𝐺 =	 [	𝑠𝐼 − 𝐴]=* and X(0) = 0. 
 
This is all fine and well, but how do we compute this thing? 
 
Let’s back up to the original equation and stop before we form the 
inverse: 
 

[𝑠𝐼 − 𝐴]𝑋 = 𝑆 
 
 
Now as earlier we form a diagonalized system using the eigenvalues and 
the modal matrix, D and M. 
 
We know that 𝐷 =	𝑀=*𝐴𝑀, 𝐴 = 	𝑀𝐷𝑀=*, 𝑠𝐼 = 	𝑀=*𝑠𝐼𝑀 
 

𝐷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
d1 0 0 0 0 0 0
0 𝑑2 0 0 0 0 0
0 0 𝑑3 0 0 0 0
0 0 0 𝑑4 0 0 0
0 0 0 0 𝑑5 0 0
0 0 0 0 0 𝑑6 0
0 0 0 0 0 0 𝑑7⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
Left multiply by 𝑀=* and inject the identity before X vector. 
 

𝑀0.[𝑠𝐼 − 𝐴]𝑀𝑀0.𝑋 = 𝑀0.𝑆 
This is  

[𝑠𝐼 − 𝐷]𝑀−1𝑋 = 𝑀−1𝑆 
And 
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[𝑠𝐼 − 𝐷] = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎡
s − d1 0 0 0 0 0 0
0 𝑠 − 𝑑2 0 0 0 0 0
0 0 𝑠 − 𝑑3 0 0 0 0
0 0 0 𝑠 − 𝑑4 0 0 0
0 0 0 0 𝑠 − 𝑑5 0 0
0 0 0 0 0 𝑠 − 𝑑6 0
0 0 0 0 0 0 𝑠 − 𝑑7⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
The inverse of a diagonal matrix is a matrix which inverts each diagonal 
element so: 
 

[𝑠𝐼 − 𝐷]#+ =	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
s − d1

0 0 0 0 0 0

0
1

s − d2
0 0 0 0 0

0 0
1

s − d3
0 0 0 0

0 0 0
1

s − d4
0 0 0

0 0 0 0
1

s − d5
0 0

0 0 0 0 0
1

s − d6
0

0 0 0 0 0 0
1

s − d7⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 
So now looking at: 
 	

[𝑠𝐼 − 𝐷]𝑀−1𝑋 = 𝑀−1𝑆	
 

𝑀0.𝑋 = [𝑠𝐼 − 𝐷]−1𝑀0.𝑆 
 
Now multiply by M 
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X	 = 	M[𝑠𝐼 − 𝐷]−1𝑀0.𝑆	
	
So, we have done it, our transfer function is: 
 
   𝑋 = 𝐺 ∗ 𝑆 and 𝐺 = 	 	M[𝑠𝐼 − 𝐷]%#𝑀−1

 
 
This G is easy to calculate with modern tools. 
The inverse Laplace transform,	ℒ#+, of this is  
 

ℒ#+	M�𝑠𝐼−𝐷�−1𝑀#+

=M	

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑒
;+% 0 0 0 0 0 0
0 𝑒;0% 0 0 0 0 0
0 0 𝑒;1% 0 0 0 0
0 0 0 𝑒;2% 0 0 0
0 0 0 0 𝑒;3% 0 0
0 0 0 0 0 𝑒;-% 0
0 0 0 0 0 0 𝑒;.%⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑀#+ 

 
This is the time domain impulse response of the system. That is, this is 
the behavior we would get with short pulse of neutrons with an integral 
of 1 were to hit our system. 
 
To get the result for a step source we would need to multiply by So/s and 
transform the result: 

ℒ#+	M�𝑠(𝑠𝐼−𝐷)�−1𝑀#+𝑆𝑜 
 



 71 

X(t)

= 	M	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡(1 − 𝑒

?'@)
−𝑑1

0 0 0 0 0 0

0
(1 − 𝑒?3@)
−𝑑2 0 0 0 0 0

0 0
(1 − 𝑒?0@)
−𝑑3

0 0 0 0

0 0 0
(1 − 𝑒?=@)
−𝑑4 0 0 0

0 0 0 0
(1 − 𝑒?/@)
−𝑑5

0 0

0 0 0 0 0
(1 − 𝑒?>@)
−𝑑6 0

0 0 0 0 0 0
(1 − 𝑒?A@)
−𝑑7 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑀.' 

 
This is not hard. First find the eigenvalues and eigenvectors of A, form 
the diagonal matrix show above with the inverted terms for a given 
value of s.  Then multiply from the left by M and right by M inverse. 
 
Multiplication of this result by the source vector will result in only the 
first column of G being used.  This is because only the first element of S 
is non-zero.  The first result will be the fission rate, the following six 
elements will represent the precursor concentrations. 
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 Short Term  

(0.05 Seconds) 
Long Term 
(200 Seconds) 

Impulse 
Fission Rate  

  
Impulse 
Precursors 

  
Step Fission 
Rate 
 

  
Step 
Precursors 
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We see a prompt jump behavior in both the impulse and step response 
curves.  This prompt jump is due to the sudden introduction of source 
neutrons rather than a change in reactivity as we usually discuss.  Before 
the precursors start to respond in either case, the prompt jump will be 
Hh?
>=<

.  For the step response case the final equilibrium fission rate will be 
=Hh?
<

. In this the log base ten of these two values are 0.0039 and 0.0078.  
Based on a source rate So = 1. 
 
MATLAB Script for Calculating Impulse or Step Response. 
function [X,dt] = StepOrImpulseResponce(Rho,So,Tf,Type,PlotPoints) 
    KC = KineticsConstants; 
    A = KC.Amatrix(Rho); 
    [M,d] = eig(A,"vector"); % M is the modal matrix, d is a vector     
         % of the eigenvalues. 
    dt = Tf/(PlotPoints-1); 
    S = [So;0;0;0;0;0;0]; 
    One = ones(7,1); 
    X = zeros(7,PlotPoints); 
    for Step = 2:PlotPoints 
        t = (Step-1)/(PlotPoints-1)*Tf; 
        if Type == "Step" 
            g = -(One-exp(d*t))./d; %Note this is a vector computation. 
        else % Impulse Case 
            g = exp(d*t); %Note this is a vector computation. 
 
        end 
        Gd = diag(g); 
        G = M*Gd/M; 
        X(:,Step) = G*S; 
    end 
end 
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Alternate Approach to the Source Transfer Function 
 
We will now develop a source transfer function using a traditional 
algebraic approach which will be illustrative but more complex from a 
computational perspective. 
 

4&())
4)

=	&())∗(r%b)
L

+ ∑ l(𝐶((𝑡)0
(1# +S 

 
𝑑𝐶((𝑡)
𝑑𝑡

= 		
𝑛(𝑡) ∗ b(

L
−	l(𝐶((𝑡) 

 
Now take the Laplace transform of both and solve for N(s) eliminating 
C(s), assume that n(t) and C(t) are both zero. Taking n(0) = 1.0: 
 

𝑁(𝑠) =
1

𝑠L + (r − b) − ∑
l(b(
𝑠 + l(

0
(1#

	𝑆(𝑠) 

This can be simplified a bit by moving the beta within the sum and 
eliminating this leads to:  
 

𝑁(𝑠) =
1

𝑠L + ∑ 𝑠𝛽(
𝑠 + 𝜆(

− r0
(1#

	𝑆(𝑠) 

It would be best if this were in the form of a ratio of polynomials, so we 
now compute one polynomial and one vector of polynomials reducing 
the first by one factor 
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𝜓 =?(𝑠 + 𝜆(

0

(1#

) 

𝜑(1#:0 =	
𝜓

𝑠 + 𝜆(
 

Then  

𝑁(𝑠) =
𝜓

𝑠(𝜓L + ∑ 𝛽(𝜑() − 𝜓r0
(1#

	𝑆(𝑠) 

 
Below are the results for a step. This is the same as we obtained using 
the matrix method above 
 
Short Term  
(0.05 Seconds) 

Long Term 
(200 Seconds) 
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The following table shows the MALAB script to create these plots using 
the Laplace domain method. 
 
function PolynomialBasedTransferFunction() 
    Rho = -1; 
    [Numerator,Denominator]= FindNumeratorAndDenominator(-1); 
    
     
    Tfinal = 0.05; % Time being observed seconds 
    PlotingPoints = 10000;  
    TimeArray = 1.0e-4:Tfinal/PlotingPoints:Tfinal; 
    H = tf(Numerator,Denominator); %This prepares the transfer function. 
    InputArray = ones(length(TimeArray),1); 
    FissionRate = lsim(H,InputArray,TimeArray); %This does the simiulation. 
    figure 
    semilogy(TimeArray,FissionRate); 
    title("Log Fission Rate vs time for a Source Step, Rho = "+ Rho); 
    subtitle("Laplace Domain Method"); 
    xlabel("Time (Sec)"); 
    ylabel("Log10 Fission Rate"); 
    
end 
 
function [Numerator,Denominator]= FindNumeratorAndDenominator(Rho) 
    KC = KineticsConstants(); 
     
    Psi  = 1; 
    for i = 1:6 
        Psi = conv(Psi,[1 KC.L(i)]); 
    end 
    Phi = zeros(6,6); 
     
    for i = 1:6 
        Phi(i,:) = polydiv(Psi,[1 KC.L(i)]); 
    end 
     
    D1 = KC.GenerationTime*[Psi,0];  %This is s*Psi times generation time. 
    D2 = zeros(1,6); 
    for i = 1:6 
        D2 = D2 + KC.B(i).*Phi(i,:); 
    end 
    D2 = [0,D2,0]; %This is s times the sum times generation time. 
    D3 = [0,-Rho*Psi*KC.BetaTotal]; 
    Denominator = D1+D2+D3; 
    Numerator = KC.GenerationTime*Psi; 
end 
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The Zero Fission Rate Six Group Reactivity Transfer Function 
Approximation 
 
This development provides another look at a time varying reactivity and 
it results in methods to measure (or approximate) the parameter  >

?
.   This 

is done by developing a frequency domain transfer function whose 
magnitude and phase is a function of a perturbation frequency.  To make 
this measurement, a method for providing an oscillating small reactivity 
in a real reactor would be required.  In any event we assume an initially 
steady state reactor. 
 
We start with the kinetics equations 
 

𝑑𝑛(𝑡)
𝑑𝑡

= 	
𝑛(𝑡)(r − b)

L
+A l(𝐶((𝑡)

0

(1#

 

 
𝑑𝐶((𝑡)
𝑑𝑡

= 		
𝑛(𝑡)b(
L

−	l(𝐶((𝑡) 
 
Now replace the variables with perturbed values as follows: 
 

𝑛(𝑡) → 	𝑛& + 𝛿𝑛(𝑡) 
𝐶(𝑡) → 	𝐶& + 𝛿𝐶(𝑡) 
𝜌(𝑡) → 	𝜌& + 𝛿𝜌(𝑡) 

 
Ignore all terms which involve products of variations such as 
𝛿𝑛(𝑡)	𝛿𝜌(𝑡). 
 
Also apply the steady state condition for all the terms in initial values: 

0 = 	
𝑛&(r& − b)

L
+Hl,𝐶,&

0

,/*

 



 78 

0 = 		
𝑛&b,
L

−	l,𝐶,& 
This results in: 
 

8(i_("))
8"

=	_6
L
𝛿𝜌(𝑡) +	i_(")

L
�r& − b� + ∑ l,𝛿𝐶,0

,/* (t) 
 

𝑑𝛿𝐶,(𝑡)
𝑑𝑡

= 	
𝛿𝑛(𝑡)𝛽,

L
− 𝜆,𝛿𝐶,(𝑡) 

 
Now take the Laplace transform of these equations and solve the system 
for the transfer function (G(s) 	= i_(\)

i<(\)
).  Recall that the Laplace 

transform of 8j(")
8"

	is 𝑠𝑌(𝑠). Where s is the Laplace variable, and it 
becomes j𝜔 in the frequency domain. This results in the following: 
 

𝐺(𝑠) = 	
𝑛&

𝑠(L + ∑ 𝛽)
𝑠 + 𝜆)

) − r&
-
)*+

 

 
First, we solved for 𝛿𝐶,(𝑡) in the second equation and substituted into 
the first to develop the required ratio.  
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In the frequency domain this becomes 
 

𝐺�j𝜔� = 	 𝑛&

j𝜔(L + ∑ 𝛽)
j𝜔 + 𝜆)

) − r&
-
)*+

 

 
This equation may be used to observe several parameters in reactor 
testing. Plotting shows some interesting results. 
 

  
 
 
So, if a reactor is presented with a small oscillating reactivity and the 
resultant fission rate oscillations magnitude and phase are recorded, 
these may be plotted as shown to estimate the parameters 𝛽 and Λ.  The 
point where the magnitude is >

?
 occurs at a frequency of *'6	kI8/\$]

'l
=

20.53𝐻𝑧. 
 
To understand this approximation, assume r& = 0 and put the transfer 
function into a one delayed neutron group form: 
 

𝐺(j𝜔) = 	
𝑛&

j𝜔(L + 𝛽
j𝜔 + 𝜆)

=
𝑛&(𝑗𝜔 + 𝜆)

(𝑗𝜔)(L(𝑗𝜔 + 𝜆) + 𝛽)
 

 

𝐺�j𝜔� =	= 𝑛&(𝑗𝜔 + 𝜆)
(𝑗𝜔)(𝑗𝜔L + 𝜆L + 𝛽)

(−𝑗𝜔L + 𝜆L + 𝛽)
(−𝑗𝜔L + 𝜆L + 𝛽)
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𝐺�j𝜔� =	= 𝑛&(𝑗𝜔 + 𝜆)(−𝑗𝜔L + 𝜆L + 𝛽)
(𝑗𝜔)((𝜔L)0 + (𝜆L + 𝛽)0)

 

 
The phase of this transfer function is 45° when the real and imaginary 
parts of the numerator are equal: 
 

𝜔	𝛽 = 	𝜆0L + 	𝜆	𝛽 +	𝜔0L 
 
If the last term on the right-hand side dominates, we have: 
 

𝜔 ≅ 	𝛽/L 
 
By setting the real part and imaginary part of the numerator equal we 
would have a +45° angle.  The factor of 1/j however represents a 
rotation of minus 90 degrees yielding the required -45° angle. 
 
To be useful this transfer needs to be in a form where the roots can be 
readily computed.  This implies that we need a ratio of polynomials.  
 
To put the transfer function in this form we need to multiply numerator 
and denominator by the product: 
 

Ψ =	�(𝑠 + 𝜆,)
,

 

We also compute a matrix: 
 

𝜙,,:01( = Ψ/(𝑠 + 𝜆,) 
 
With this our equation becomes a ratio in polynomials: 
 

𝐺(j𝜔) = 	
𝑛+Ψ

s(ΨL+∑ 𝛽"𝜙"(𝑖, : )) − Ψr+
,
"-.
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The vector Ψ  and the matrix 𝜙  both have constant sets of polynomial 
coefficients.  
 
 S6 S5 S4 S3 S2 S1 S0 

Ψ 1 4.60482   5.36551   1.77599   0.183602   0.00553084   4.37243e-05  ] 
 

𝜙(1, : ) 0 1 4.59236   5.30827   1.70983   0.162291   0.00350804   

𝜙(2, : ) 0 1 4.57429   5.22586   1.61645   0.134254   0.00143224   

𝜙(3, : ) 0 1 4.49341   4.86488   1.23397   0.0461195   0.000392446   

𝜙(4, : ) 0 1 4.30352   4.06884   0.550034   0.0178747   0.000145117   

𝜙(5,: ) 0 1 3.46876   1.42477   0.157357   0.00483454   3.84875e-05   

𝜙(6,: ) 0 1 1.59178   0.569413   0.0603283   0.00183082   1.45117e-05   

        
 
The material in this section has been presented largely for historical 
reasons.  One does not do this testing of this sort on a fission rate 
reactor.  Generally, these tests require a specially designed 
configuration.  This sort of testing was done in the past using test 
reactors.  None the less, it is worthwhile because it has introduced a 
method that will use later in analyzing the stability of closed loop reactor 
systems where the reactor heats fuel water and both impact reactivity.  
 
Oscillations of Significant Size 
 
The small signal approximation leads to an output fission rate oscillation 
with a phase delay relative to the reactivity oscillation.   This misses a 
real and interesting nonlinear aspect of a reactor’s response to an 
oscillating reactivity. The actual output fission rate will oscillate but it 
will do so about a rising average. 
 
What follows is an oscillation with a peak reactivity of 0.25𝛽 and a 
frequency of 0.016 Hz. 
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Reactor Response to a 0.25𝛽 
Oscillation 
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Additional Topics:  
 
1. SUR Equation Without the Prompt Jump Assumption and S=0 
 
If we do not allow either the prompt jump assumption or the single 
delayed group approximation the startup equation takes the following 
form. 
 

𝑆𝑈𝑅 = 26.06[𝑑𝑝𝑚 − 𝑠𝑒𝑐]
−Λ𝑛̈𝑛 + 𝜌̇ + 𝜆$%%𝜌 +

𝜆̇$%%
𝜆$%%

(𝛽 − 𝜌)

𝛽 − 𝜌 −
𝜆̇$%%
𝜆$%%

Λ + 𝜆$%%Λ
 

 
This equation works well for demonstrating the SUR during a rapid 
change in reactivity but, near prompt criticality, it can suffer 
singularities and fail. The best approach is to calculate the SUR directly 
using the six-group reactor kinetics equation solutions as 
 

𝑆𝑈𝑅 = 26.06[𝑑𝑝𝑚 − 𝑠𝑒𝑐]	𝑛̇/𝑛	
 
Even for the equation above we need to solve the six-group problem to 
obtain the second derivative of n,	𝜆$%%, and the first derivative of 𝜆$%%. 
 
The plots below demonstrate a prompt jump (insertion with a tau of 
0.5ms).  First using the prompt jump corrected equation show in this 
section and last, using the version derived above for the variable lambda 
effective. 
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The first four of these plots are using the prompt jump corrected version of the SUR 
equation.  The last plot is SUR for the same transient using the corrected lambda 
effective derivative method. One can see that the latter case significantly 
overestimates the SUR during the transient.  In both cases, the six-group group 
solution is plotted in red. 
 



 85 

 
2. Another way to think about the reactor neutron multiplication 

process. 
 

 
 
Suppose we think of what is going on in a reactor as a set of 
chains of fissions with each chain initiated by the decay of a 
precursor or by introduction of a source neutron.  The chance that 
one of these neutrons causes a subsequent fission is 𝑃 =
𝐾$%%(1 − 𝛽).  The expected value for the length of a chain is given 
by: 

< 𝑘 >	= 	
∑ 𝑘𝑃op
o/*
∑ 𝑃op
o/*

=	

𝑃
(1 − 𝑃)'

𝑃
(1 − 𝑃)

= 	
1

1 − 𝑃
 

This becomes: 

< 𝑘 >	= 	
1

1 − 𝐾$%%(1 − 𝛽)
=
1/𝐾$%%
𝛽 − 𝜌

 

 
A critical reactor would have an expected chain length of *

>
= 155 

fissions. 
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Now suppose we consider the number of fissions caused by 
precursor decay or source neutron emission in a time Δ𝑡. We 
obtain a total number of chain creations as Δ𝑡(∑ 𝜆,𝐶, + 𝑆)0

,/* . 
Putting this together with the expected length of each chain we 
get that the total fission rate as: 
 

𝑛 = 	

Δ𝑡
𝐾$%%

(∑ 𝜆,𝐶, + 𝑆)0
,/*

𝛽 − 𝜌
 

 
And this is our prompt jump approximation fission rate 
expression: 

 

𝑛 = 	
Λ(∑ 𝜆,𝐶, + 𝑆)0

,/*
𝛽 − 𝜌

 

When viewed this way, the prompt jump may be thought of 
as a sudden rise in the length of the chains.   

 
Likewise, fission rate turning with a positive reactivity and 
a negative reactivity addition rate can be understood.  The 
positive reactivity implies that the precursor concentrations 
are still rising.  Hence the chain creation is also rising.  The 
negative reactivity addition rate will imply that there is a 
shortening of the chains.  Fission rate will turn when these 
two effects balance.  
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3.  Perturbation approach to calculating a reactivity ramp calculation. 

 
For small transients with a limited reactivity and for a limited time, 
we can represent the kinetics equations as: 
 

8(i_("))
8"

=	_6
L
𝛿𝜌(𝑡) +	i_(")

L
�r& − b� + ∑ l,𝛿𝐶,0

,/* (t) 
 

𝑑𝛿𝐶,(𝑡)
𝑑𝑡

= 	
𝛿𝑛(𝑡)𝛽,

L
− 𝜆,𝛿𝐶,(𝑡) 

 
We have assumed that any second order variation may be ignored. 

 
In the same vein as we used in developing the prompt jump 
equation we can rewrite this as: 

 

𝑑𝐶
𝑑𝑡 = 	𝐴𝑝𝑗(0) ∗ 𝐶 +	

𝑛0
L
𝛿𝜌(𝑡)

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛽1
𝛽2
𝛽3
𝛽4
𝛽5
𝛽6⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐴𝑝𝑗(0) is our 6x6 version of the prompt jump matrix computed 
with a zero reactivity.  Define the vector of betas as 𝛽.  We can 
integrate this as before: 
 

𝐶(𝑡) = 𝑒BLMC𝐶(0) +
𝑛&
L
𝑒BLMCs𝑒=EN@"'𝛿𝜌(𝑡)

"

&

d𝑡-𝛽��⃗  

 
Now remembering the basics, 𝑒BLM	C is a matrix. It can be put into 
diagonal form using the same M matrix that diagonalizes the Apj matrix.  
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This means that the task of performing the integration may be greatly 
simplified.  We can look at the second term as follows. 
 

𝐶(𝑡) = 𝑒BLMC𝐶(0) +
𝑛&
L
𝑀𝑒DLMC𝑀=*s𝑀𝑒=QN@"'𝑀=*𝛿𝜌(𝑡)

"

&

d𝑡-𝛽��⃗  

 
And because M is constant it may be moved outside of the integral. 
 

𝐶(𝑡) = 𝑒BLMC𝐶(0) +
𝑛&
L
𝑀𝑒DLMCs𝑒=QN@"'𝛿𝜌(𝑡′)

"

&

d𝑡-𝑀=*𝛽⃗ 

So, during the rod pull 𝛿𝜌(𝑡′) = 𝑅𝑆 ∗ 𝑡 and after the rod pull it is 
constant, 𝛿𝜌(𝑡′) = 𝑅ℎ𝑜 
 
During the rod pull, the right-hand term becomes, for each eigenvalue, 
𝑑o: 

𝑅𝑆(𝑒8=">?@@#:A − 𝑑o𝑡Nxyy,_z − 1)/𝑑o' 
 
In the case that 𝑑o is zero this becomes: 
 

𝑅𝑆
2
𝑡Nxyy,_z' 

 
Once the rod motion stops this contribution to the total effect includes 
the integral taken to the limit of the rod pull multiplied by the decaying 
𝑒DLMC . This results in the “past moving” part of the integral in that 
circumstance. 𝑡]xkk$_"	 here is measured from the time that the rods 
stopped moving. 
 

𝑅𝑆(𝑒8="8?BB!:C − �1 + 𝑑o𝑡Nxyy$8�𝑒8=("8?BB!:C=">?@@!D))/𝑑o' 
 
If 𝑑o is zero, this reduces to 𝑅𝑆 ∗ 𝑡Nxyy$8'. 
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Finally with the pulling stopped we need to add the contribution of the 
existing constant reactivity Rho: 
 

𝑅ℎ𝑜 ∗ (𝑒8="8?BB!:C − 1) 
 
If 𝑑o is zero, this reduces to Rho*𝑡]xkk$_". 
 
So, we wind up with a resulting diagonal matrix 𝐷�(𝑡) which is a 
function of time with its diagonal elements computed using either the 
first (moving) equation or the sum of the second two (past moving and 
stopped) equations.  
 
So, we can develop the final form of the term as follows 
 

𝑛&
L
𝑀𝐷�(𝑡)𝑀=*𝛽��⃗  

Thus, with the limiting constraint requiring a small Rho and a short time 
we have the following ready to exactly compute: 
 

𝐶(𝑡) = 𝑒BLMC𝐶(0) +
𝑛&
L
𝑀𝐷�(𝑡)𝑀=*𝛽��⃗  

 
While this is interesting, from a practical standpoint we can not so 
drastically limit the time of a transient or the amount of reactivity.  The 
following graph shows the percent error in this expression relative to a 
numerically computed solution without the perturbation approximation. 
In each case we are allowing the transient to start after ten seconds, pull 
rods for ten seconds, and wait after the pull for 40 sec.  We are 
measuring only the final fission rate after the transient. 
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This approach is interesting in that it can be directly computed but as 
may, be seen with only 0.1𝛽 of reactivity, the error is 17%.  A typically 
1DPM startup rate results from 0.25𝛽. 
 
 
 


