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Introduction

This document is provided to serve as class notes for a course in nuclear reactor
kinetics. The purpose of this paper is to start with a point kinetics model and
consider:

ounkwnNE

8.
9.

Review the fission process and other fundamentals.

The reactor model with only prompt neutrons.

Development of the reactor kinetics equations.

Traditional solution methods for the kinetics equations.

Matrix methods for solution of the kinetics equations.

The prompt jump assumption and related solutions of the kinetics
equation.

The one delayed group assumption and the consequences of this
assumption.

Ramp additions of reactivity.

Startup rate and related equations.

10.Source and reactivity transfer functions.

A point kinetics model is based on assuming that the differential equations
associated with a reactor are separable in space and time. That is, the solutions for
fission rate, flux, and other commodities may be treated as a product of a function
of time multiplied by a function of space. Real reactors will not have this
behavior, but in most cases the choice is a good approximation. In this course, our
interest 1s the time behavior of reactors.



1. Review The Fission Process
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The Low Energy Neutron is absorbed by
the U-235 nucleus; energy is released as
this happens. The energy is initially in the
form of nuclear vibration. When the
nucleus takes a dumbbell shape, the
nuclear forces cannot prevent separation
due to the strong electrostatic forces
repelling the fission fragments.

The fission fragments lose energy by
emitting neutrons and gamma radiation.
This process takes about 1022 sec.

The fission fragments repel each other
departing with nearly 165 million electon-
volts of kinetic energy.

Prompt Neutrons and Gammas are
produced directly from the fission. These
neutrons have energies averaging nearly 2
MEV. On the average, about 2.5 prompt
neutrons are born directly in fission.

The kinetic energy of the fission
fragments is spent within the
metal or ceramic matrix of the
fuel. This is the primary source of
heat in the reactor.

The total energy released in a
fission is approximately 200 MEV.
Once the fission fragments lose
their internal excitation energy,
they become known as fission
products.

The fission products are neutron
rich, and they undergo beta
minus decay. This reduces the
number of neutrons by one while
increasing the number of
protons. These decays have half-
lives ranging from fractions of a
second, to years.

The beta decay of the fission
products releases both beta and
gamma radiation. This produces
“decay heat”, this decay heat
represents nearly 7% of the total
reactor heat.

The neutrons that have a high
probability of causing fission
have low energy, on the order of
0.025 EV. The neutrons born in
fission need to be slowed down
in order to cause a subsequent
fission with high probability.
Note an EV is an “electron-volt”,
the energy gained by an electron
falling through a potential
difference of one volt. An MEV is
a million electron-volts.




Neutron Lifecycle

Neutrons are produced in an operating reactor primarily from initial
decay of excited state fission fragments (prompt neutrons). These
neutrons have energies on the order of an MEV. There are also neutrons
that come from the decay of fission products much later. And some
neutrons are derived from other sources. These generally have energies
on the order of tenths of an MEV. If there is to be a large chance of
these neutrons causing fission, they need to be slowed down to energies
that are hundredths an electron volt (EV). So, the kinetic energy of the
neutrons needs to be reduced by a factor of roughly 1.0x108. This is
accomplished using collisions with a material (such as water) which
contains a significant amount of hydrogen. At the same time, there is a
chance that neutrons will be adsorbed in materials within the reactor that
do not yield a fission. The neutrons may also leak out of the reactor.
We will study these phenomena in detail in a future lesson. For now,
define Keff, the number of neutrons that follow a cycle divided by the
number of neutrons that start the cycle. We apply the term “cycle” here
loosely as if the system grouped neutrons and passed them through the
process sequentially. This idea is not what happens, but the thought is
useful for understanding the behavior of a reactor.



2. Prompt Neutron Only Model (As if there were no delayed
neutrons)

Examine the dynamic behavior of a point reactor with only prompt
neutrons:
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If the reactivity is not a function of time the resulting neutron population

1S:



pt
N(t) = NoeA

A typical value for the generation time is 5x107sec. And a reasonable
reactivity would be 250x10. (This number would commonly be written
as 250 pcm.) After one second this would lead to a large value of N(t).

N(1sec) = N,e?59*1/5 = N,e50 = N, * 5.2x10%1

This is not acceptable if 250 pcm is a reasonable reactivity. The
reactivity value is typical so a reactor without delayed neutrons would
not be controllable.

3. Delayed Neutron Impact

It is instructive to consider an estimate where we simply modify the
generation time by including the impact of the delayed neutron groups.
This does not lead to correct dynamic behavior, but it demonstrates a
key point related to the effective decay constant. If a radioactive
element has a decay constant, A ,then its mean expected life is 1/4. We
think of the known precursors as existing within groups with similar
decay constants.

Group Half-life (sec) A; % Fission Bi

1 55.72 0.0124 2.25 0.000215
2 22.72 0.0305 21.8605 0.001424
3 6.22 0.111 19.6899 0.001274
4 2.3 0.301 39.5349 0.002568
5 0.610 1.14 11.472 0.000748
6 0.230 3.01 4.1860 0.000273

The [; in this table are the fraction of all neutrons born in fission that

are born into the 1’th group. The adjusted generation time weighted by
the f; could be:



N= The fraction of The fraction of
the neutrons that  neutrons born into
are born prompt  the 1’th group times
times A the mean decay
time of the group
plus A

N=(1-pA+ DB (1 +A) =AM+ TE8Bi/ ; = 0837sec

Here we have assumed that a delayed neutron, once born, will have the
same chance as a prompt neutron of slowing down and causing a new
fission. This is not exactly accurate as we will find later. Note: S is the
sum of the £;.

The interesting result here is that while the delayed neutrons are a small
fraction of the total neutrons born in fission, they represent a major
influence on the overall time constant in the system because of their
relatively long lifetimes.

So, with 250 pcm (1 pcm = 1.0x10) of reactivity we have:

N(lSEC) — N0€250x10_5*1/0'837 — N0€0'0299 = 1.0303 NO
Without developing equations which demonstrate the dynamic behavior
of the reactor we already have a feel for why delayed neutrons are so
important in making reactor control possible. Their relatively long

lifetimes have a significant impact.

We shall now develop a more detailed view of the kinetics of a reactor.



The Effective Delayed Neutron Fraction

The values of the delayed neutron fraction tabulated above are the
fraction of the neutrons born in thermal fission that are born delayed.
These are a property of the fuel itself and are fixed. The parameter that
matters in a thermal reactor is the fraction of thermal neutrons that were
born delayed. This means that not only do the neutrons need to be
created but they also need to be slowed down to thermal energies as do
the prompt neutrons. This introduces a complication.

The prompt neutrons are born with a mean energy of about 2 MEV. The
delayed neutrons are born at many different energies, largely an order of
magnitude less than the prompt neutron birth energy. This means that
delayed neutrons are more likely to successfully thermalize than prompt
neutrons. This effect will cause an increase in the effective value of this
fraction. These new fractions are denoted as f3; and .

For a geometrically small reactor this value tends to be large as the
leakage effects will accentuate the difference in the slowing down
probability. The effect is much less in a large reactor.

Low enrichment cores will also have fuel conversion from U?3® to Pu?%.
Over time the fuel concentration shifts towards Pu?*® while not
eliminating U?* completely. Pu?*® has a 8 of approximately 200x10 as
compared to 640x10° for U?. This tends to drive the § for the system
down.

A typical large thermal reactor could have a 8 ranging from 700x107 at
beginning of life down to about 500x10™ at the end of life. (Data for
AP1000, T.M. Sembiring et al 2018 J. Phys.: Conf. Ser. 962 012030)



This paper is available at:
https://iopscience.iop.org/article/10.1088/1742-
6596/962/1/012030/pdf

This document uses 5; and  throughout rather than the adjusted values.
The kinetics transients and other calculations are done using these
natural fuel values for U?*°. For the cases where MATLAB programs
are provided it would be a small matter to adjust these values if needed.

In the process of defining the internal kinetics of a reactor we define an
entity called a delayed neutron precursor. This is a fission product
which decays at some point releasing a delayed neutron. Real isotopes
tend to release delayed neutrons with some probability. We make a
distinction here. Precursors are a population that do release a delayed
neutron so the probability that a delayed neutron is released from the
decay of a precursor 1s one. We use the symbol "C;" to represent the
concentration of precursors in the 1’th group. And we use the symbol,
“C”, to represent the total concentration of precursors.

We will now build a “cycle model” to provide an intuitive derivation of
the reactor kinetics equations. We start with only the concept of Ketr,
delayed neutrons with 8 and 3; and we think of about the numbers of
neutrons as we go around a cycle.

In the future we will look at a much more first principles-based version
of this derivation. The interesting thing is that we will find that our
simple derivation produces the exact result, not a conceptual
approximation.



1. Development of the Reactor Kinetics Equations

o

i

s—

Ni= Neutrons starting one generation
Nt = Fictitious number of neutrons after Ker

Na = Number of neutrons that will be born delayed = fK, ¢ Ni
S = Number of neutrons from other sources in At.

Np = (1 — B)KessN;

Ndecay = Yoo q A; C; At

Ne=(1— B)KersN; + Y51 A; C; At + SAt

The change in neutron population in one generation is:



So
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This becomes for small delta t.
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Where A = at
Kefr
Similarly
dCi(t) IBL
— N(t) — A; G
Tt (t)
Observations:

e These equations represent a group of seven differential equations.
If the reactivity is piecewise constant they may be treated as linear
equations and solved in closed form.

e The quantity p = 1 — is the reactivity. It may be arbitrarily

Kerr
negative. It must be maintained less than f§ for the reactor to be

controllable as may be seen by examining the first reactor kinetics
equation.
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e When the reactivity is not constant, these equations are nonlinear
and are often solved using approximation techniques.

» The Prompt Jump Assumption. (Good assumption): For

dAN(t) . )
di ) 1s considered small

enough to ignore. This removes much of the
computational difficulty (stiffness) in the equations
resulting in a reduction of the first kinetics equation to:

small reactivity, the quantity A

N(®) = AQZP=1 4 G +5)/(B— p)

This reduces the kinetics problem to solving the six
precursor differential equations.

As long as the reactivity is controlled to be much less
than [ this is adequate to develop accurate results.

A stiff problem is one where the derivative can have
large erroneous values when the unknown itself is
small.

= The one delayed group assumption (Very poor
assumption): The six groups of precursors are treated as
one group with a single decay constant. The sum is
reduced to A.¢¢C. This approach is used primarily in

teaching environments. It is not helpful in
understanding the precise values of the related
parameters. In any case this assumption reduces the
kinetics problem to a single differential equation
coupled with the prompt jump approximation algebraic
fission rate equation.

11



2. Traditional Solution Methods for the Reactor Kinetics Equations

Traditional Approach (Without Prompt Jump or one delayed group
assumption)

Assume reactivity is not a function of time (Linear Case) and there are
no external sources of neutrons. For now, set S = 0.

dn(t) _ n(-H . \
ar " +;/1ici(t)

dCi(t)_ n(t)ﬂi
a A

— 4G (1)

This amounts to seven differential equations in seven function
unknowns. The equations have constant coefficients and are known to
have solutions which will be linear sums of terms.

6
n(t) = 2 aje®i’

j=
6

Ci = 2 bl-jewft

J=0

o

The seven {mj-o0:6} are the roots of the characteristic equation:
Let n = ae® and Ci(t) = bije®. Recognizing that the derivative of ¢ is

just ® e®* we see that all the terms with e®* will drop out of the equation
leading to
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6
wa = @‘Fz/’ilbl

i=1

n(t)p;
—— = Jib;

Solving the second of these equations for b; and substituting into the first
gives the following form with “a” canceled.

a)_(p—ﬂ)Jr B Ai
A A(w+ ;)

C()bl' =

Now solving for the reactivity, we get:
6
P,
p Li(o+ A)

This is known as the in-hour equation (inverse-hour), and it has the
following properties:

1. The reactivity is limited by the physics of the system. For example,
there are about 2.5 neutrons created per fission and a fuel
absorption has only approximately 5/6 chance of creating a fission.

So Kefr could be no larger than %. This alone would bound the

reactivity at 0.52. Realistically other absorption and leakage
would further limit the reactivity. As we have seen, safe reactor
operation must limit reactivity to well below f.

2. There are seven real roots for ® and they vary over a large range.
3. If p > 0 the equation will have one positive root, w,. All others
are non-zero and negative. For large positive reactivities much

greater than f§ the asymptotic value of wy, = p/A.
4. If p < 0 the equation will have seven negative roots.

13



-1
AKeff

. This is on the

5. The most negative eigenvalue 1s asymptotic to

order of -1.0x10° sec™!
6. In the positive and negative directions, each eigenvalue is
asymptotic to one of the {A;} except at the ends.

pls)

1.0

Ky

A gruphical determination of the roots to the Inhour equation

Talken from J. Duderstadt & L. Hamulton,
"Nuclear Reactor Analysis”, p. 245

The reference is available at:
http://milproj.dc.umich.edu/pdfs/books/1976 Nuclear%20Reactor%20A
nalysis.pdf
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Here are some solutions for @ assuming A = 50usec

0B 0.0 0.1 0.25 1.0 4.0
o) -0.0000 0.0102 0.0395 6.6280 1161.0
@, -0.0144 -0.0138 -0.0134 -0.0128 -0.012504
@, 0.0682 -0.0628 -0.0548 -0.0380 -0.031206
w -0.1950 -0.1877 -0.1764 -0.1376 -0.11367
3
) -1.0203 -1.0094 -0.9889 -0.6921 -0.31443
4
) -2.8992 -2.8880 -2.8664 -2.2738 -1.1507
5
Wg -129.4078 -116.5533 -97.2944 -8.0785 -3.0272
0/ 0.1 [-0.25 1.0 -10
@y -0.0058468 -0.0097112 -0.011986 -0.012423
o -0.01532 -0.017606 -0.024912 -0.029871
@, -0.073233 -0.079534 -0.095291 -0.10928
W3 -0.20185 -0.21115 -0.24199 -0.29042
0, -1.0295 -1.0409 -1.0743 -1.1243
e -2.9085 -2.92 -2.9531 -3.0017
a)6 -142.27 -161.58 -258.2 -1419

Prompt Criticality o/ = 1.0

15



This has been the traditional approach towards understanding reactor
kinetics. The method requires a constant reactivity so it may only be
used in a region where fission rate does not affect reactivity.

What remains is to determine the 49 coefficients for the exponential

terms in each of the sums.
6
n(t) = Z aje®i’

j=0
6

Ci = z bl-jewft

j=0

This done by matching the initial conditions on n and C; as well as their

derivatives and is a great deal of work.

Next, we will look at another approach that lends itself more readily to
modern tools such as MATLAB, Python, Mathematica, and so on. The

new method also requires a constant reactivity for now.
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3. Matrix Method for solving the Reactor Kinetics Equations

Modern computer programs make manipulation of matrixes and vectors
easy. This includes the computation of eigenvalues and eigenvectors
related to matrixes. This means that a simple method is available for
solving the kinetics equations which allows computation in only a few
lines of programming. For example, MATLAB can be used to perform
this quickly.

The seven reactor kinetics equations may be written as:

ax =AX+S
dt
Where:
Fn(t) T P — . So1 X
Z((t)) pAB Mo b A A A A 00 - A
Co(t) B./A -2, O 0 0 0 0 0 B/ M
X() =|C5(0) |B/4 0 -2, 0 0 0 0 $=10 ng | P2/%2
| 4T|gsa 0 0o -, 0o o0 o0 01 =—2|B:/%
Cs(t) BJA O 0 0 =1, 0 0 8 B/ A4
LG (1) Bs/A 0 0 0 0 -1 O Y Bs/2s
B/A O 0 0 0 0 —A B/ 6

So 1s the source rate and n, 1s the initial fission rate.

Assuming the reactivity is constant this equation has a solution using the
integrating factor: e At

t
X(t) = eAXo + eAtj e~At'S(t) dt’

0
and

17



eAt = Z(l/i!)(At)i
i=0

We will assume the source term S is constant which results in X(t)
being:

X(t) = eMXo + A7leM(1 — e7AH)S = X (0) + A71 (e~ ])S

The obstacle here is the computation of the matrix exponential. This
problem can be greatly simplified using diagonalization of A as follows.
Define the eigenvalues and eigenvectors of A as follows:

Det(A — wl) = 0 AT = wo 6647

The matrix 1s 7X7 and there will be seven solutions for omega. There
will be seven eigenvectors E. Formally the solutions for omega could be
real or complex where the complex roots would appear in congregate
pairs. As it happens, the roots to this problem all are real. Likewise, the
eigenvectors are real.

The key idea here is that a matrix M formed with its columns being the
eigenvectors may be used to form a diagonal form of the A matrix.

M7X7 = [ggxl é>17x1 é>z7x1 égxl éle é>s7x1 é>67x1]
D =M~1AM
and

w, 0 0 0 0 0 07

0 w; 0 0 0 0 O

0 0 w, 0 0 0 0

p=l0 0 0 w; O O O

0 0 0 0 w, 0 O

0 0 0 0 0 ws O
0 0 0 0 0 0 wg

The following relationships also hold
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A=MDM™! A"l =MD"1M™?

We can write

e ot 0 0 0 0 0 0 7
0 e®@1t 0 0 0 0 0
ot 0 0 ezt 0 0 0 0
Pt = (/iyMAMD = 0 0 0 et 0 0 0
i=0 0 0 0 0 g @al 0 0
0 0 0 0 0 eWst 0
L 0 0 0 0 0 0 e@el ]

So, the solutions to the kinetics equations:
X(t) = eMXo + A7leM(1 — e72H)S = eAX(0) + A71 (e = ])S
May be rewritten as follows:
X(t) = MeP*M~1X0 + MD 1 (ePt — M ~1S

Which may be directly computed once the eigenvectors and eigenvalues
are known.

Once we have defined A, X, and S, MATLAB computes D and the M
matrixes with one command. The ePt matrix, are computed. Finally, X
for any value of t can be found. This gives us the fission rate and all
precursor concentrations for each value of time.

Note that A, M, M!, D, and D! are constant for all steps in the iteration
and need only be computed once. Further note that D! may be
computed by inverting the diagonal elements of D. Further, products
such as MD™! and M~1S need only be computed once.

Software tools such as MATLAB use various mathematical methods,
such as the Pade approximation, to compute the matrix exponential.
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This avoids the need to perform the diagonalization explained in this
document. Hence the matrix nay be found simply as ExpAt =
expm(A*t). We will use the diagonalization method because it is
instructive.

Linear System Stability

A linear system defined by

dx7x1
dt

=A7x7X7x1 _I_B7x1

is stable if all the eigenvalues of A have negative real parts.
This implies that for any finite B there will be a steady state
value of X given by

X7xlss — _(A7x7)—1B7x1

For example, for B equal to zero the steady state value will be zero.

Further we know that the condition for a matrix to be invertible
(nonsingular) is that none of its eigenvalues be zero. This results from
the fact that the determinate is the product of the eigenvalues of the
matrix.

Using this idea, we can see that the stability of a linear system is not a
function of the vector X. If the system is stable for one solution it is
stable for all solutions. Indeed, this fact will lead us to realize that from
a practical standpoint, few systems are linear in the extreme. For
example, if we design an amplifier to be linear, the linearity will only
apply over a range of inputs and outputs.
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There are many ways that one might define a nonlinear system and
discuss its solution. The following form is useful in our nuclear reactor
context:

anxl

” =Anxn(Xn+1 )anl 4+ pnxl

history

Here the system A, X, and B is expanded to include parameters beyond
the neutron density (Fission rate) and the precursor concentrations.

They will include elements related to the coolant temperature, and any
other features which impact the system reactivity. A becomes a function
of X and its entire history.

The linear nuclear kinetics problem is stable whenever the reactivity is
less than zero. It is not stable if the reactivity is greater than or equal to
zero. (Note that stability in this formal sense is not the same idea as
controllability. Also, we use the term controllability to mean that we
may control the reactor which is different from the formal definition of
this word used in system control theory.)

We will discuss definitions of controllable reactors later in the course.
We will discuss the nonlinear example shown above at length later in the
course. When reactor fission rate impacts the temperature and hence the

reactivity we have this situation. All this will be covered later in the
course.
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Example Transients

The pages that follow contain several examples transients. These plots
are the log base ten of the fission rate (proportional to the log of the
neutron density); and the log base ten if the normalized precursor
concentrations.

We take advantage of the fact that A is constant and that we will use a
constant time step in the iteration. Starting with the general solution
above:

X(t) = MeP*M~1X0 + MD 1 (ePt — M ™1S

Define a time step length as 7, ¢4 = MeP*™M 1. Then for subsequent
steps we only need to multiply by e4? for the next time step.

Start with G = I. Also precompute B = A~1S. Then the iteration
becomes:

For Step = 0 to Number if Iterations
G=e1G
X(Step + 1) = GXo + (G—I)B
End

This greatly reduces the computation. We are using MATLAB and it

requires array indexes to be greater than zero, so we need to modify the

above steps to account for this limitation, but otherwise, what we have
here 1s all that we need.
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Linear System Examples: Reactivity = 0.258 for 1 sec

Log Power vs. Time (sec)
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Examples: Reactivity =-0.25p for 1 sec

Log Power vs. Time (sec)
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Examples: Reactivity =-10f for 20 minutes with a So = 2.0x107>

Log Power vs. Time (sec)
T T T

| 1 1 1 1
0 200 400 600 800 1000 1200
Time Isec)

Note that the fission rate here is scaled to an initial value of one
source the source rate is on that basis. The fission rate levels off
here due to these source neutrons. We will look more at this
later.
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Log10 Power

Relative Precursor Concentrations

Examples: Reactivity = 1.1 for 0.5 sec
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% May 2025

% Step response to a step at time 0. Initial fission rate normalized to 1.
% Example call: SimplePower(0.25,1)

% This will plot the 1 second transient with reactivity equal

% to 0.25%xBeta

function SimplePower(ReactivityFractionOfBeta,TimeInterval)

So = 2.0e-5; % Source Rate normalized for a unit initial fission rate.

S = [S0;0;0;0;0;0;0];

Tau = 1.0e-4; % Time step duration in seconds.
T _hist = 0:Tau:Timelnterval;

HistoryLength = length(T_hist);

X_hist = zeros(7,HistorylLength);

Betas = ...
[0.00021;0.00141;0.00127;0.00255;0.00074;0.000271;

BetaTotal = sum(Betas);

Lambdas = ..

[0.01246403;0.03052863;0.11141479;0.30130435;1.13606557;3.01304348] ;

GenerationTime = 5.0e-5;
Xo = [1;Betas./(Lambdas*GenerationTime)];
function A = Amatrix(ReactivityFraction)
A = zeros(7,7);
A(1,1) = ... % The three dots extends the line.
BetaTotalx(ReactivityFraction-1)/GenerationTime;
A(2:7,1) = Betas/GenerationTime; % Fills first column 2:7
A(1,2:7) = Lambdas'; % Fills first row 2:7
A = A + diag([@;-Lambdas]); % Fills diagonal after (1,1)
end

A = Amatrix(ReactivityFractionOfBeta);
[M, D] = eig(A);
ExpDTau = diag(exp(diag(D)x*Tau),Q);
ExpATau = MxExpDTau/M; % '/' Right multiplies by the inverse of M.
AinvS = A\S; % '\' Left multiplies by the inverse of A.
X_hist(:,1) = Xo(); % Copies vector Xo into the first col of X_hist.
I =eye(7); % This is a 7x7 unit matrix.
G =1I;
for Step = 1:HistorylLength-1
G = ExpATauxG;
X_hist(:,Step+1)= GxXo+(G-I)*AinvS;
end
figure
plot(T_hist, logl@(X_hist(1,:)),'r")
title('Log Fission rate vs. Time (sec)');
xlabel("Time Isec)")
figure
plot(T_hist,logl@(X_hist(2:7,:)./X0(2:7)),'r")
title('Log Normalized Precursor Concentrations vs. Time (sec)');
xlabel("Time (sec)")
end
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Subcritical Multiplication

Consider a shutdown reactor. Subcritical multiplication is the process
whereby source neutrons make up for the losses in the fission chain.
When the reactor is shutdown the Keff'is < 1 so neutrons are lost on
each trip around the loop. The number can be made constant with an
injection of neutrons from non-fission sources.

The delayed neutron part of the cycle is not presented here because we
are in a virtual steady state. The steady state condition is:

NSteady State — effNSteady state T SAt
The above equation may be rearranged as
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SAt
Nsteaay state = 1— K,z
e

Now once again

So

—SA —SA  SA

Nsteaay state = 1—1/Kq s = P = o]

The addition of a source impacts the first reactor kinetics equation as
follows:

dn(t) _ n(t)* (,0 P)
dt

+Z,1C(t)+s

Here the value of S is in units of neutron density rate of change due to
sources. If there were no n(t) nor precursors at t= 0, S is the rate at
which fission rate would start to increase.

Where do source neutrons come from?

For a core that has been operated, the primary source of neutrons is the
reaction Hf + y§ — Hi + n}. This gamma must have at least 2.23
MEYV. These high energy gammas come from a relatively small number
of fission product decay chains. There is a rapid reduction in this source
over the first day after shutdown. Following that the level will reduce
with a 12.8-day half-life due to Ba'*° to La!“? fission product decay.
Following this, after several months, decay is controlled by other
isotopes with half-lives of approximately one year.
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In many reactors other sources of neutrons are installed to provide a
visible count rate on the Source Range Instruments.

There also natural sources of neutrons including cosmic rays,

spontaneous fission, and certain internal core («, n) reactions. The last of
these will vary based on the specifics of the fuel being used.
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4. The Prompt Jump Assumption and Related Solutions of the Kinetics
Equation

The reactor kinetics differential equations bring significant difficulty.
This difficulty stems from the range of the eigenvalues of the A matrix.
If the reactivity 1s 0.185, we have the following eigenvalue set. These
all have units of inverse time in seconds.

-116.5533 -2.8879 -1.0094 -187.7195e-3
-62.7713e-3 10.1868 e-3 -13.8297e-3

The ultimate use of these numbers 1s to be multiplied by time and placed
in exponentials. The first number here is a problem. Its related term
decays rapidly, which can lead to computational issues. It develops that
this problem traces to the use of the generation time in our differential
equations. The step size needed to integrate it is much less than would
be required for the other eigenvalues.

an() _ (p=BIN(®) + 21_621/11_ C;+S

dt 4C.(0) A 8
i(t)  bi _

One solution is to approximate these equations by replacing the first

: : : d : :
with another equation with A % set to zero. Doing so introduces

error, but it will develop that the error is small so long as we do not have
rapid jumps in reactivity and that the reactivity is well below . We
will handle jumps in reactivity as a discontinuity in the fission rate
(recognizing that this is non-physical). This approximation is called the
“Prompt Jump Assumption”.

The first equation then becomes:
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6
N(©) = A 4 Ci+5)/(B = p)
i=1

If we pose an examination of a sudden step change in reactivity. We
realize that the number of precursors is continuous. The fission rate

would be continuous if we did not make the prompt jump assumption.

However, fission rate becomes discontinuous.

(p(0-) — HN(O) %
_ A - ;Ai C:(0_)+S

6
(p(04) — B)N(0,) _
- A = ;Ai ¢;(0.)+S

The two right sides are the same because C’s and S are continuous so

—p(0_
N(0,) = N(O) [%

Or for an initially critical reactor with a step of reactivity this becomes

the following:

N = N [;2]

If we return to the plots that we showed above for fission rate transients.
Step changes in reactivity both up and down produced a rapid change in

the fission rate followed by a slow rise or fall depending on the sign of

the reactivity change. What we have done with this assumption is to
close the time for that initial rise or fall, down to zero.

32



Understanding the Prompt Jump

1. When Kesr is changed the inner prompt cycle N starts to rise.

2. The number of neutrons coming from the decay of precursors is
not yet changing. The number of neutrons being lost from the cycle
Nd is going up as the inner loop number is going up.

3. A quasi-steady state happens when the losses from the loop due to
the precursor production is equal to the gains coming across Kett.
After that fission rate only rises as the precursor decay rate

1ncreases.
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5. Computational Consequence of the Prompt Jump Approximation

We set the left-hand size of the of the following equal to zero and solve
for n(t):

dn(t) _ n(t) (,0 P)
dt

+2/1€(t)+5

We start with the fission rate and full precursor equations:

° dci(t) N@®+*p,
NO=AQ LG +/B-p) —a = a HGO

We can write the precursor differential equations in matrix form
imbedding the fission rate equation directly as the production term
involving N(t).

dC 6x1
— Ap] 6x6c6x1 + B6x1
dt
G Br/ B
gz B2/22 gz S
— |3 _ B3/ 23 NS/D —|P3|{=_
Cc(t) c, Co(0) = B/ A B= 5 (ﬁ_p
Cs Bs/2s Bs
Co Be/ 26 Pe
Bty — 4 (B —p) P14z B143 Bily Bi4s B12s
B22a B2z — (B — p) B223 B2A4 B22s B2e
Apj = (L) B3y B34, B3A3-2,(8-p) B32s B3As B3le
B-p Baty Bz Bals Budy — 24(B — p) Buls Bate
Bst BsA, Bsls Bsy Bsds — As(B —p) Bsls
Be 1 Ber2 BeAs Bers BeAs Bere — As(B — p)
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As before, assuming the reactivity is constant, this equation has a
solution:

t
C(t) = eAPIEC(0) + eAPt J e~ APit'B ¢’
0
Note: The shutdown equilibrium condition is that % is zero. In that case
C; = BiNs/p/AA; . Substituting, into 0 = ApjC + B yields the expected
shutdown equilibrium equation: Ng,p, = — %. From a computational

perspective this is superior to the full seven-dimensional system. The
eigenvalues of the P matrix do not exhibit the wide variation found in
the full kinetics equation solution. For a critical reactor the full kinetics
eigenvalues range from zero to -129.4 sec™!. For this case, the values
range from zero to -2.9 sec™.

Comparison of the full kinetics solution with the prompt jump
approximation solution. Reactivity = 0.25f for 1 sec.

Plotting Power: Full Kinetics and Prompt Jump i i 2 Percent Error: Full Kinetics and Prompt Jump Approxi i
T T T T T T T T T T T T T T T

0121~ /

|
0.5

Log10 Power
3
8
Log10 Percent Error

-05 \

) L L L . L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time Time

Comparison of Full Kinetics solution and Prompt Jump
Approximation following a step insertion of Reactivity.
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Reactivity
(fraction of [8)
0.01
0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Percent Error
1 Second

0.00435691
0.0238797
0.0538971
0.140564
0.285914
0.544648
1.04626
2.15068
5.13245
16.8672

Percent Error
20 Seconds

0.00438015
0.0256779
0.0634204
0.20239
0.519591
1.28996
3.33663
9.63026
35.6158
298.031

As expected, the prompt jump assumption solution falls apart as the

reactivity approaches the value of 8 . In the region less than 40% of 8

the prompt jump approximation is strong. Real operating reactors

usually limit reactivity to less than this value. 40% of  would yield a

steady state SUR of about 3 DPM. 20% of 8 yields about 1 DPM.

The computation approach for the prompt jump assumption cases uses
the same method as was used for the full kinetics approach. This takes
full advantage of the non-changing value of the system matrix to allow
its computation only once. Once again, we define a matrix G which is

recursively modified for each time step.
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SimplePowerPJ.m

W.N. Locke

May 2025

Step response to a step at time @. Initial fission rate normalized to 1.
Example call: SimplePower(0.25,1)

This will plot the 1 second transient with reactivity equal

to 0.25%Beta

function SimplePowerPJ(ReactivityFractionOfBeta,TimeInterval)

So = 2.0e-5; % Source Rate normalized for a unit initial fission rate.

Tau = 1.0e-4; % Time step duration in seconds.
T_hist = 0:Tau:TimelInterval;

HistoryLength = length(T_hist);

C_hist = zeros(6,HistoryLength);

N_hist = zeros(1,HistoryLength);
N_hist(1) = 1;
Betas = ...

[0.00021;0.00141;0.00127;0.00255;0.00074;0.000271;
BetaTotal = sum(Betas);
Lambdas = ..
[0. 01246403 0.03052863;0.11141479;0.30130435;1.13606557;3.01304348];
GenerationTime = 5.0e-5;
Co = [Betas./(Lambdas*GenerationTime)];
function APJ = AmatrixPJ(ReactivityFraction)

APJ = Betasx*Lambdas';
D = diag(Lambdas)=*BetaTotalx(1-ReactivityFraction);
APJ = (APJ - D)/(BetaTotalx(1-ReactivityFraction));

end

Apj = AmatrixPJ(ReactivityFractionOfBeta);

[M, D] = eig(Apj);

ExpDTau = diag(exp(diag(D)x*Tau),Q);

ExpATau = MxExpDTau/M; % '/' Right multiplies by the inverse of M.
= 1/(BetaTotalx(1-ReactivityFractionOfBeta));

B = Betas*Soxrf;
ApjinvB = Apj\B;
C_hist(:,1) = Co(); % Copies vector Co into the first col of X_hist.
I-= eye(6); % This is a 6x6 unit matrix.
G =
for Step 1:HistoryLength-1
G = ExpATauxG;
C_hist(:,Step+1)= GxCo+(G-I)*ApjinvB;
N_hist(Step+l) = ...
GenerationTimexrfx(dot(Lambdas,C_hist(:,Step+1))+So);
end
figure

plot(T_hist,logl@(N_hist(1,:)),'r")
title('Log Power vs. Time (sec)');
xlabel("Time Isec)")
figure
plot(T_hist,logl10(C_hist(1:6,:)./Co(:)),'r")
title('Log Normalized Precursor Concentrations vs. Time (sec)');
xlabel("Time (sec)")
end
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Ramp Reactivity Additions

So far, our study of reactor kinetics has assumed a linear time-invariant
system, allowing us to use the integrating factor in solving the kinetics
equations. We treated A as constant, moving it in and out of derivatives
or integrals. However, when reactivity changes, A varies over time. This
complicates our approach. We can still write the point reactor kinetics
equations, but now A and other variables depend on both time and the
solution X or C.

7x1 6x1
dX * — A7X7X7x1 +S7x1 dC x

dt dt

=Apj6x6c6x1 _I_B6x1

Prior to the days when computer and computational capabilities became
ubiquitous people put significant effort into solving the case where p(t)
was a simple linear function of time. The solutions involved esoteric
tabulated functions and brought little practical help.

For example, one case 1s a ramp with only one delayed neutron group

being considered. Further the reactivity ramp rate,y, is constrained to be
exactly AS. This yields the following.

O _E

g YA
— A —
B Vﬁ ytep<2);\ —£t>X[1

+ﬁ(2yiA)1/2 wp (B2 AA)Z(

)

Here the erf function is defined as:

)
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X

erf(x) = J e~$°dé

0

Reference: Dynamics of Nuclear Reactors, David L. Hetrick, University
of Chicago Press, 1971.

This tells the story. We are given the simplest of changing reactivities
and we are forced into depilating assumptions which will make our
numbers too far in error to be of value. One can certainly not place this
limit on the reactivity addition rate. It is also clear that the vast
manipulation needed to arrive at this result will not enhance our
understanding of the physics present. We also understand that
computation with the one delayed group model is just wrong.

The solution to this dilemma is to turn to numerical approximation in
solving the reactor kinetics equations. The full 7x7 formulation of the
problem is difficult because of the wide variations of the eigenvalues of
the A matrix. We will use the prompt jump approximation 6x6
representation of the system. In so doing, we require the reactivity to be
maintained well below £.

In this section we introduce the “startup rate”. This is the number of
decades of fission rate change per minute (DPM). This quantity will be
discussed at length in the next section. We define it as:

dP/dt
P

SUR = 26.06(dpm — sec)

We will now look at the entire computation associated with this transient
using numerical methods with MATLAB. One could use either Python
or Julia with similar effort. The rod motion starts at “StartTime”, and has
a duration, “Pulllnterval”. The rod speed is defined as follows:
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FinalReactivityFractionfraction of Beta
RodSpeed =

PullInterval

With this the reactivity can be found as follows:

function Rho = Reactivity(t)
if t < StartTime
Rho = 0.0;
elseif t < Pulllnterval+StartTime
Rho = RodSpeedx(t-StartTime);
else
Rho = RodSpeed*Pulllnterval;
end
end

We will find a history of the precursor concentrations and from this we
can compute fission rate, startup rate, and the effective precursor decay
constant. The effective decay constant is a weight average time constant
defined as follows:

o1 4 Ci(t)
°,Ci(®)

Aerr(t) =

The prompt jump approximation Apj matrix is developed as follows.

function APJ = AmatrixPJ(ReactivityFraction)
APJ = BetasxLambdas';
D = diag(Lambdas)*BetaTotalx(1-ReactivityFraction);
APJ = (APJ - D)/(BetaTotalx(1-ReactivityFraction));
End

“diag” creates a diagonal matrix from the Lambdas vector.
Betas*Lambdas™@"Pos¢ creates the outer product of these two vectors

resulting in a matrix fB;4; , “i” is the row and *j” is the column. The “*”
causes a transpose.

The B(t) vector is formed by the following:

function Bvector = B(Rho)
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Bvector = Betas*So/(BetaTotalx(1-Rho));
end

The source rate is S, = 1.0e — 8.

With these devices the ode target function is:

function dCdt = TargetFunction(t,C)
Rho = Reactivity(t);
A = AmatrixPJ(Rho);
dCdt = AxC+B(Rho);

end

The initial state of the precursors vector is Co

Co = PoxBetas./(LambdasxGenerationTime);

Given this the precursor differential equations are solved in three lines:

span [0,TotalTime];
opts = odeset(RelTol=1e-9,AbsTol=1e-10);
[T_hist,C_hist] = ode23t(@TargetFunction,span,Co,opts);

Once the history of precursor concentrations has been developed the
fission rate, A, s, and startup rate are computed directly.

for k=1:Num
Rho = Reactivity(T_hist(k));
C = C_hist(k,:);
P _hist(t) = GenerationTimexdot(Lambdas,C)/(BetaTotal*x(1-Rho));
LambdaEff_hist(k) = dot(C,Lambdas)/sum(C);

end

% This implements SUR

= 26.06 dpm-sec (dP/dt)/P
SUR_hist = 26.06xdiff(P_hi

st)./(diff(T_hist).*P_hist(2:end));

Note that the startup rate history is being computed as a vector
calculation. The diff() function takes the difference between adjacent
values. And the “./”” operator causes each element of the numerator

41



vector to be divided by each element of the denominator vector.
Likewise, the “.*” operator indicates element by element multiplication.
The diff function produces a vector of length one less than the length of

its argument.

Rho =0.25, Initial Fission rate = 1.0

Reactivity vs. Time (sec)

0.25
02
©
© 0.15
o
&
o
=
&=
0.1
0.05 -
0 20 40 60 80 100 120 140 160 180 200
Time (Sec)
as Log Prompt Jump ODE Power vs. Time (sec)
o
25}
o
°
[
o
=3 1.8
S
{2
ko)
1L
0.5
ol —
05 , \ . \ , . . \
0 20 40 60 80 100 120 140 160 180

Time (Sec)

200

Decades per Minute

Prompt Jump ODE Sur vs. Time (sec)

1.4

i

o
®

o
o

o
S

02 /

X

20

I I L I I I I
40 60 80 100 120 140 160 180
Tima (Qam

200

Prompt Jump ODE Lambda eff vs. Time (sec)

. . . . . . .
40 60 80 100 120 140 160 180
Time (Sec)

200

42



Rho = -1, Initial Fission rate = 1.0

Reactivity vs. Time (sec)

Rho/Beta
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We have used the prompt jump assumption for these calculations. The
following graph demonstrates the errors that result from this approach
compared to a full kinetics calculation. The plot shows the percent error
in the final fission rate reached after a 200 second transient using a ten
second start time, a ten second rod pull, followed by a 180 second wait.
The reactivity at each point is what remained after each rod pull. A total
of 1000 transients were used to create this plot.

Ramp Insertion, Full Kinetics to Prompt Jump

W %Error vs. Reactivity Fraction
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Full MATLAB Program for Computing a
Ramp Reactivity Insertion

ReactivityRampODEPJ.m
W.N. Locke
April 17, 2025
Step response to a step at time 0.
Example call: RampFission RateSUR(
FractionOfBeta,
Start Time,...
PullInterval,...
TotalTime
);

The first will plot the 100 second transient with reactivity equal
to 0.25%Beta. The second will plot a shutdown

0 0 A A A A° A° A° O° ° ° A° ° o o

function ReactivityRampODEPJ()

TReactivityRampODEP](0.25,10,50,200)
% TReactivityRampODEPJ(-5,10,100,2000)

function TReactivityRampODEPJ(...
FinalReactivityFractionOfBeta,...
StartTime, ...
PullInterval,...
TotalTime ...
)

Lambdas = ...

[0.01246403;0.03052863;0.11141479;0.30130435;1.13606557;3.01304348];
Betas =[0.00021;0.00141;0.00127;0.00255;0.00074;0.00027];
BetaTotal = sum(Betas);

GenerationTime = 5.0e-5;
So = 1le-8;

RodSpeed = FinalReactivityFractionOfBeta/Pulllnterval;
no = 1;

function Rho = Reactivity(t)
if t < StartTime
Rho = 0.0;
elseif t < Pulllnterval+StartTime
Rho = RodSpeedx(t-StartTime);
else

0.0.0.0.0.0.0.0000000000000000000000000000000000000000000000000000000000000000
"6"0"6"6"0"0"0"6"0"0"0"0"6"0"0"0"6"6"0"0"0"6"6"0"0"6"06"0"006 6000606060006 0600060600006 0600060600006 0600060606°0 00606000
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Rho = RodSpeedxPulllnterval;
end
end

function Bvector = B(Rho)
Bvector = BetasxSo/(BetaTotalx(1-Rho));
end

function APJ = AmatrixPJ(ReactivityFraction)
APJ = BetasxLambdas';
D = diag(Lambdas)*BetaTotalx(1-ReactivityFraction);
APJ = (APJ - D)/(BetaTotalx(1-ReactivityFraction));
end
function n = FissionRate(C,Rho)
n = GenerationTimexdot(Lambdas,C)/(BetaTotalx(1-Rho));
end
function dCdt = TargetFunction(t,C)
Rho = Reactivity(t);
A = AmatrixPJ(Rho);
dCdt = AxC+B(Rho);
end

Co = noxBetas./(LambdasxGenerationTime);
span = [0,TotalTimel;
opts = odeset(RelTol=1e-9,AbsTol=1e-10);
[T_hist,C_hist] = ode23t(@TargetFunction,span,Co,opts);
Num = length(T_hist);
LambdaEff_hist=zeros(1,Num);
n_hist = zeros(Num,1);
Rho_hist= zeros(Num,1);
for k=1:Num
C = C_hist(k,:);
LambdaEff_hist(k) = dot(C,Lambdas)/sum(C);
Rho_hist(k) = Reactivity(T_hist(k));
n_hist(k) = FissionRate(C,Rho_hist(k));
end
SUR_hist = 26.06xdiff(n_hist)./(diff(T_hist).*n_hist(2:end));

PlotKineticsData(Num,T_hist,n_hist,LambdaEff_hist,SUR_hist,Rho_hist)
end

function PlotKineticsData(...

Num,T_hist,...

n_hist,...

LambdaEff_hist, ...

SUR_hist, ...

Rho_hist...

)
figure;
plot(T_hist,Rho_hist);
title('Reactivity vs. Time (sec)', 'FontSize',16);
ylim([1.1xmin(Rho_hist),1.1*max(Rho_hist)])
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grid on;

xlabel("Time (Sec)",'FontSize',14);

ylabel("Rho/Beta", 'FontSize',14);

figure;

plot(T_hist, logl@(n_hist));

title(...

‘Log Prompt Jump ODE Fission Rate vs. Time
(sec)','FontSize'...
,16);

grid on;

xlabel("Time (Sec)",'FontSize',14);

ylabel("logl@(P/Po)", 'FontSize',14);

figure

plot(T_hist,LambdaEff_hist,'r');

title('Prompt Jump ODE Lambda eff vs. Time
(sec)','FontSize',16);

xlabel("Time (Sec)",'FontSize',14)

ylabel("1/Sec", 'FontSize',14)

grid on;

figure

plot(T_hist(2:end),SUR_hist,'r');

title('Prompt Jump ODE Sur vs. Time (sec)','FontSize',16);

xlabel("Time (Sec)",'FontSize',14)

ylabel("Decades per Minute", 'FontSize',14)

grid on;

fprintf("Number of Iterations: %d\n",Num)

fprintf("Final ODE Lambda: %f\n",LambdaEff_hist(Num))

fprintf("Final ODE SUR: %f\n",SUR_hist(end))
fprintf("Final Logl® ODE Fission Rate: %g\n",logl@(n_hist(end)))
end
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The concept of startup rate and the related equations

Early in reactor development it became evident that both the protection
equipment and operators need information related to the rate at which
fission rate changes. In simple form the kinetics equations have
exponential solutions. This led people to think of a “reactor period”, the
time it takes for fission rate to change by a factor of “€”. This measure
can however be confusing because a steady state perlod is infinite. The

next step is to consider an inverse period 1/ T, So fission rate is changing

asn(t) = n(O)et/ T, And we could display 1/ ¢ - Beyond this however,
the industry generally objected to being asked to think in fission rates of
“e”. The choice was to change the equation to a base ten and to convert
the resulting rate expression to units of per minute rather than per
second. T itselfis in units of seconds so the conversion is as follows
n(t) = n(0)10% SUR®pecades/minidt™™ {ygino this idea SUR =

60 sec
log,,(e) * [S";g‘] 26.06 [DPM-sec]/ tl*¢¢l. Further, using a simple
idea related to a decay equation the period may be defined as 7 = %

With this definition the

SUR = 26.06 [DPM — sec] + =&,
n(t)

Alternately, this is also used in the following form within protection and
control equipment:

SUR = 26.06 [DPM — sec] <~ (Inn(t))

The equation SUR = 26.06 [DPM — sec] E ; may be directly used

with a stream of digital data representing n(t). For example, in simplest

form this could be: SUR = 26.06 [DPM — sec] (”ft:j(tt);zg)) . With real

plant data this method could present problems due to electrical noise.
The best approach would be to apply digital filtering to the samples prior
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to computing the difference. Digital sampling theory could also be used
to combine the difference with the filtering.

The SUR equation

We proceed by forming an expression for

n(t)

n(t)

SUR = 26.06 [DPM — sec] *

This SUR equation is a tool used throughout the nuclear industry as a
training aid. The equation is usually derived making the following
assumptions:

e Point Kinetics is adequate to represent the reactor.
: . d .
e The prompt jump assumption is used Ad—IZ ~ (0 and the reactivity is
significantly less than £5.

e The delayed neutron precursors are placed into a single group with
one effective decay constant.
e Sources denoted by S are constant in time.

The first two assumptions are acceptable from the standpoint of normal
operations. The third is not, it leads to significant error in the numbers
computed by the resulting equation.

Define: Agrf = 6 L ACi(t) /X5, Ci(t) . We plotted this value in our
ramp transient example plots above. Also recall that f = Y9, B,

We will proceed using the first two assumptions and the one delayed
group assumption. However, we will consider that the group decay
effective A, ¢ has a time derivative. This leads to an interesting

correction to the SUR equation.
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The original point kinetics equations are as follows:

6
dn(®) _ n()(p=p)
= +;ziq(t)+s
dc,t)  n(®p,
a A

— 4G (1)

The one delayed group approximations and prompt jump assumptions
convert these as follows using the dot notation for the time derivative.

 JersCOA+ 54 :
n(t) = 55 C(t) = Z C;(t)
. n(t)p <
C() = “F = AoyrC() heps €O = ) ACi(®)

Rearrange the first of these by clearing the denominator to the
left-hand side and perform an implicit derivative, we obtain.

(O (B=p) = nO)p = AeprCOA+ ZoprC(D)A

Now observe the following rearrangements of the above equations
hoprCOA = n(D)(B—p) — SA
C()A = n(t)B — AesrC()A= n(t)p + S4

Substituting these equations in the implicit derivative we have the
following
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(OB p) — n(O)p

Ae
= - Z () (B—p) — SA] + Aepr(n(t)p + SA)

So, we have an expression for n(t)/ n(t) whichis 1/7.

A 54 SA
. frf
. + —p)— —=|+ 4 + —=
(t) ~ Y Terf [((B—p) n(t)] err(p n(t))
n(t) (B=p)
Case SUR Equation
S #0 e SA SA
Pp 0 P 7o (B= ) = 51+ Zeps (o + 1)
= 26.06 [dpm — sec] B=p)
5= _ Pt AesP | Jess
Jepr %0 SUR = 26.06 [dpm — sec] l B=p) ﬂ’effl
S +0 . SA
. P+ Aesr(o + —5)
dorr =0 _ B n(t)
ff SUR = 26.06 [dpm — sec] B=7)
§=0 _ Pt e
Aegs =0 SUR = 26.06 [dpm — sec] B=p)

The last of these 1s what 1s commonly known as the startup rate
equation.

P+ Aessp

SUR = 26.06 [dpm — sec] B=p)

The results of this equation may be effectively corrected with the

. . . Ae C e
adjustment provided by adding rﬁ so long as the reactivity is much
ef

f
less than S.
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Aside — SUR for a Sudden Insertion of Reactivity

If we do not set A dr;(tt) =0
6
dn(t) n@®)*(—p) Z
ar " + Z, A Ci(t)

However, we can easily compute the initial SUR of a prompt critical
reactor.

Consider a steady state reactor such that A,¢¢C(0) = fn(0)/A. Now

assume we step a reactivity just equal to . Prior to the precursor
concentrations changing the first reactor kinetics becomes:

dn(t) _
at

dn(t)
dt

pn(0)/A which yields a SUR = 26.06 /n(t) = 26.06 p /A.

If A = 50 microseconds this will yield 3336 DPM.
This is a six group full kinetics sur solution for a step of constant
reactivity equal to f.

|
€
2

Sur vs. Time (sec) 2, AEIME Qo

000000

Typical Example Problem using the SUR equation
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Using this equation suppose we start from steady state and pull rods for
15 seconds. The final reactivity is 0.254. Plot the SUR transient and

fission rate. Also assume = 640pcm and A.¢r = 0. 1+ =

C

While pulling p = ——= (5/300)/
Before Rods Move SUR=26.06 [dpm — sec] W 0.000 DPM
Rods Start Moving SUR=26.06 [dpm — sec] 5/300 /Sezr_(g-)l 1/sec)0 0.43 DPM
Rods Finish :Tust SUR=26.06 [dpm — sec] 5/300 /sec+(0.11/sec)0.25 1.45 DPM
before stopping (1-0.25)
After Rods Stop SUR=26.06 [dpm — sec] 22 /5“2(1-(1) ;é)sec)o-% 0.87 DPM

The following plots demonstrate this calculation compared with a six
delayed neutron group calculation. The fission rate is plotted. The
kinetics equation results computed, and the SUR equation results are
plotted. And the computed A s f and I are plotted. Finally, the

Aeff
reactivity transient is plotted.

Plotting Power For a Varying Startup Rate

We often plot the log10(n(t)/n(0)) along with the startup rate plots. With a

varying SUR(t) the power is given by the following:
n(t) = n(O)]_Ofot SUR(t')[Decades/min]dt'[min]

So, when plotting log10(n(t)/n(0)) we are simply plotting | Ot SUR(t")dt". This is

the area under the startup rate curve. Take care here with the units of time. SUR is

given in per minute. So, if we want the left-hand side of this equation in seconds,

we will need to make a time conversion as follows.

dt'[sec]

t
t) = 0 10f SUR(t')[Decades/min] e —
n(t) = n(0) 10% 60 [sec/min]
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Log10 Power - State Space Solution
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There are significant differences between the computed SUR and the
values coming from the SUR equation. If we replot this using the

. c oy A .
equation which is corrected by the term ;i we get the following:

eff



Log10 Power - State Space Solution
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Clearly the problem here is that it is not easy to know the value of the

ratio

Aefr

Aeff

unless we are doing a full six group calculation as we are

here. Therefore, people use the simplified equation to get an idea of the

nature of the transient even while the numbers are incorrect.
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Power Turning

Examine the second part of the transient shown in the previous two
figures. The fission rate turns (the SUR is zero) well before the
reactivity 1s back to zero. The numerator of the SUR equation is p +
Aer s p. The fission rate turns when this sum is zero. The negative pis

forcing this to happen.

There are two contributions to the rate of change of fission rate, one is
the rate of change of the prompt cycle neutrons, the other is the rate of

change of the precursor concentrations. Ignoring S and ﬂe'f F

B-p) (B=p

n(t) =

Because we found C(t)A = n(t) o, we know that a positive reactivity
will always indicate that the precursor concentrations are going up. But
the negative p will mean the prompt cycle is lowering. Fission rate turns
when the two effects sum to zero.
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How much reactivity is in the core at the time that fission rate turned
using the SUR equation?

P+ Aesrp =0
= p = > 0.1 ! = 1/6
P = Aeff ( SOOSeC)ﬁ/(' sec)_ /66

SUR Equation with Source Neutrons

b+ degs (o + 575

SUR = 26.06 [dpm — sec] )

Notice that this form gives the same equation as we derived for the

steady state fission rate in a shutdown reactor with sources present. The

steady state fission rate is inversely proportional to reactivity and
directly proportional to SA.

Additional Examples of Kinetics transients with fission rate below the

point of adding heat.
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Log10 Power
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This is a reactor startup as a sequence of rod withdrawals.
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This is a close-up of a rod withdrawal when there remains a great deal of
negative reactivity in the plant. In this case the fission rate rises only a
small amount, and the SUR is small and quickly damped.
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This is a close-up of a rod withdrawal when there remains little negative
reactivity in the plant. In this case the fission rate rises much more, and
the SUR is larger and slowly damped.
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Log10 Power
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This is a reactor startup performed with a singular rod pull from -10 beta
to 0.25 beta. Discuss this transient. Why would it trouble you? The
final SUR here 1s again 1 DPM.
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This is a reactor trip from critical. Notice that the log of fission rate

becomes a straight line. What is the SUR? Notice the sudden drop in

fission rate at time zero: Py, = Py_ (i) = 11 P,_ = 0.048P,_

p—p 21
and Log10(0.048) = —1.32
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Variation in the Effective Decay Constant

Find Aefr and Ci(t) in terms of the other quantities if fission rate is on a
stable period t, N(t) = Noe". Here the period is taken as 26.06 [dpm-
sec]/SUR.

dCi_ﬁl
i oA

bring the term involving the C; to the left-hand side of the equation and
multiply both sides of the equation by e#it. This makes the left-hand
side a total derivative:

(el tC) 'Bl At+t/r
Integrating this from (0,t) yields:

A t +t /Tdt

>|w

C;(t) = C;(0)e it 4 =4 J
0

This becomes:

it + bi
/1(/1 +1/7)

Ci(t) = C;(0)e™ (e — M)

But with a stable positive period, all the e ~%i¢ terms would be small as
compared to et/7:

) — Bi t/T
Ci(t) = A+ ©

Now with
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Zillici(t)
>0 Ci(t)

eff —

We have the following result for the effective delayed neutron fraction
in terms of the stable positive period:

Z AT+ D (/1 T + 1) _ 26.06[dpm — sec]
£ SUR
Z LT+ 1) + 1)

Effective Decay Constant vs. SUR
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Values Computed Assuming a Stable Period

SUR Effective Decay Constant | Approximate Reactivity
(dpm) 1/sec as a Fraction of 8
0 0.0771 0
0.1 0.0833 0.03
0.5 0.1016 0.13
1 0.1178 0.22
2 0.1405 0.34
5 0.1795 0.52
10 0.2142 0.65
100 0.3373 0.95
170 0.3578 1.0 (Prompt Critical)

Generation Time Assumed to be 5x107 sec.
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Effective decay constant with negative reactivity following a prompt
insertion of reactivity. Insertion of -1000 £.
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Step Log Power)
|
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Step - Lambda
I

0 50 100 150 200 250 300
Time (sec)

The final value of the effective decay constant is a function of the
stepped in reactivity

Conclusion

While use of an effective decay constant of unchanging value during
transients may have some heuristic value in giving people a view of how
startup rate behaves, it is misleading and will lead to significantly wrong
answers. Kinetics analysis really requires a full solution of the
associated coupled differential equations.
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Transfer Functions

We looked at transfer functions in our review of Laplace transforms in a
previous lesson. Recall that transfer functions only apply in a system
which initially is in a zero state, and it is unchanging other than the state
vector. This will work for us if we consider a system of constant
reactivity but not if the reactivity is changing in time. Here we will look
at two cases where we can meet these requirements. And then we will
create a system with varying reactivity but approximating the system by
making small variations.

Source Transfer Function

Consider a sample of fissile material which contains fuel and moderator
but is not large enough to be a critical mass. It will likely have a fission
rate due to neutrons from outside sources, but that total fission rate will
be assumed to be below anything significant. We now consider the
effect of bring a neutron source into proximity with our sample.

aX AX+ S

dt
[ n(6) ] p—pB 7 r'SourceRate
G (0) A A A Ak A 0
C, () B/A =2, 0 0 0 0 0 0

X(@) =|[C:(0) A= B./A 0 =2, 0 0 0 0 S= 0
C.(0 “lp/a 0 0 -2, 0 0 0 0
Cs (1) BJA O 0 0 -1 0 0 8
LCe (1) Bs/A 0 0 0 0 —A O
g/A 0 0 0 0 0 —A

Take the Laplace transform of this equation and solve for X
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X =[sl—A]"1s
Our transfer functionis G = [sI — A]™! and X(0) = 0.

This is all fine and well, but how do we compute this thing?

Let’s back up to the original equation and stop before we form the
inverse:

[sI—A]X =S

Now as earlier we form a diagonalized system using the eigenvalues and
the modal matrix, D and M.

We know that D = M~1AM, A= MDM™,sI = M~1sIM

rd1

U
cCoo oo o
(=l e i N lo)

QU
OOU.IOOOO
QU
Oo\OOOOO

Q
OOOOONO
Q
OOOO()OO

I
S oo o oo

d7
Left multiply by M~1 and inject the identity before X vector.
M-1[s] — AIMM~'X = M-S
This is
[s] = DM 'X = M!S
And
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s —dl 0
s—d2

S O O O

[sI — D] =

S O O OO

d5

O O O O OO

s—dé6
0 s —d7

0 0
0 0
— 0
0 s—d4
0 0
0 0
0 0

O O O OO
o O O oo
OOI

The inverse of a diagonal matrix is a matrix which inverts each diagonal
element so:

1
0 0 0 0 0
s —di1l
1
0 0 0 0 0
s—d2
1
0 0 T 0 0 0 0
1
s —D]™1 = 0 0 0 0 0
[ | s — d4
0 0 0 0 1 0 0
s —d5
0 0 0 0 0 1 0
s —dé6
0 0 0 0 0 0 1
s —d7-

So now looking at:
[s] = DM~ 'X = M!S
M~1X =[s] — D]"1M~1S

Now multiply by M
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X = M[s] — D]"1M~1S
So, we have done it, our transfer function is:

-1

X=Gx+Sand G = M|[s] — D] 'm

This G is easy to calculate with modern tools.
The inverse Laplace transform, £, of this is

£ M[sI — D]_lM‘l

redlt 0 0 0 0 0 7
0 ed2t 0 0 0 0
0 0 e®t 0 0 0
=M|o o o0 e o o o |M?
0 0 0 0 et 0 0
0 0 0 0 0 edt
L 0 0 0 0 0 0 ed7t]

This is the time domain impulse response of the system. That is, this is
the behavior we would get with short pulse of neutrons with an integral
of 1 were to hit our system.

To get the result for a step source we would need to multiply by So/s and
transform the result:

£* M[s(sl — D)]_lM‘lSo
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X(t)

(1 —e 0 0 0 0 0 0
—d1
1-— edZt
0 % 0 0 0 0 0
1-— ed3t
0 0 % 0 0 0 0
1-— ed4-t
= M 0 0 0 % 0 0 0
(1 _ edSt)
0 0 0 0 _— 0 0
—d5
(1 _ ed6t)
0 —_— 0
0 0 0 0 —J6
(1 _ ed7t)
0 0 0 0 0 0 R ———
—d7

This is not hard. First find the eigenvalues and eigenvectors of A, form
the diagonal matrix show above with the inverted terms for a given
value of s. Then multiply from the left by M and right by M inverse.

Multiplication of this result by the source vector will result in only the
first column of G being used. This is because only the first element of S
is non-zero. The first result will be the fission rate, the following six
elements will represent the precursor concentrations.
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Short Term Long Term
(0.05 Seconds) (200 Seconds)

Log Fission Rate vs time for a Source Impulse, Rho = -1

Log Fission Rate vs time for a Source Impulse, Rho

Impulse
. . i
Fission Rate
8 104
S0
<
s
=
B
10°
10° .
v 7
¥ Y s 10
0 0005 001 0015 002 0025 003 0035 004 0045 005 5 ST TR S T
Time (Sec) §
Time (Sec)
I 1 S e o Precursors vs vs time for a Source Impulse, Rho = 0 : Precursors vs vs time for a Source Impulse, Rho = -1 :
— 107!
recursors —
| , 107
3 8 10°
& &
s | s
T %
§ 8
| 10
104 ¢
10°
10° e
0 0005 001 0015 002 0025 005 0085 004 0045 005 o 20 40 6 8 _ 100 120 140 160 180 200
Time (Sec) Time (Sec)
t : b 102 : CoglEisslon|Rateyvs twe)fora Sotas/StepyhojsEy . x10° Log Fission Rate vs time for a Source Step, Rho
Step Fission ; ——

Rate wl/ |

Log10 Fission Rate
Log10 Fission Rate

6
10 L L L L L L L L '
0 0005 001 0015 002 0025 003 0035 004 0045 005 @ @ w @ o o o om m E aD

Time (Sec) Time (Sec)

Precursors vs time for a Source Step, Rh

Precursors vs time for a Source Step, Rho

Step T o

10° = 2 I S

,,—""777 0 e =

Precursors LY

E . 21 — an

4 g |

; |

< W £

g gll?l'2

.

10°
10710
10" 10*

0025 100 120
Time (Sec) Time (Sec)

72



We see a prompt jump behavior in both the impulse and step response
curves. This prompt jump is due to the sudden introduction of source
neutrons rather than a change in reactivity as we usually discuss. Before

the precursors start to respond in either case, the prompt jump will be
SoA

B-p

—_SpOA. In this the log base ten of these two values are 0.0039 and 0.0078.

Based on a source rate So = 1.

. For the step response case the final equilibrium fission rate will be

MATLAB Script for Calculating Impulse or Step Response.
function [X,dt] = StepOrImpulseResponce(Rho,So,Tf,Type,PlotPoints)
KC = KineticsConstants;
A = KC.Amatrix(Rho);
[M,d] = eig(A,"vector"); % M is the modal matrix, d is a vector
% of the eigenvalues.
dt = Tf/(PlotPoints-1);
S = [S0;0;0;0;0;0;0];
One = ones(7,1);
X = zeros(7,PlotPoints);
for Step = 2:PlotPoints
t = (Step-1)/(PlotPoints-1)x*Tf;
if Type == "Step"
g = —(One-exp(dxt))./d; %Note this is a vector computation.
else % Impulse Case
g = exp(dxt); %Note this is a vector computation.

end
Gd = diag(g);
G = MxGd/M;
X(:,Step) = Gx*S;
end
end
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Alternate Approach to the Source Transfer Function

We will now develop a source transfer function using a traditional
algebraic approach which will be illustrative but more complex from a
computational perspective.

dn(t) _ n®+(p-p)
== = X AG(0)FS

dt A

— 4 Gi(2)

Now take the Laplace transform of both and solve for N(s) eliminating
C(s), assume that n(t) and C(t) are both zero. Taking n(0) = 1.0:

1
N(S)_ ﬂ S(S)
sA+(p— B — X5 15;/1

This can be simplified a bit by moving the beta within the sum and
eliminating this leads to:

1
N(s) = S(s)

It would be best if this were in the form of a ratio of polynomials, so we

now compute one polynomial and one vector of polynomials reducing
the first by one factor
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Then

N(s) = S(s)

sWA+ X Biw) —Yp

Below are the results for a step. This is the same as we obtained using
the matrix method above

Short Term Long Term
(0.05 Seconds) (200 Seconds)

R
R

Log10Fi
Log10 Fi

0.025 0. X X X X 0 80 100 120
Time (Sec) Time (Sec)
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The following table shows the MALAB script to create these plots using
the Laplace domain method.

end

end

function PolynomialBasedTransferFunction()

Rho = -1;
[Numerator,Denominator]= FindNumeratorAndDenominator(-1);

Tfinal = 0.05; % Time being observed seconds

PlotingPoints = 10000;

TimeArray = 1.0e-4:Tfinal/PlotingPoints:Tfinal;

H = tf(Numerator,Denominator); %This prepares the transfer function.
InputArray = ones(length(TimeArray),1);

FissionRate = lsim(H,InputArray,TimeArray); %This does the simiulation.

figure

semilogy(TimeArray,FissionRate);

title("Log Fission Rate vs time for a Source Step, Rho = "+ Rho);
subtitle("Laplace Domain Method");

xlabel("Time (Sec)");

ylabel("Logl@® Fission Rate");

function [Numerator,Denominator]= FindNumeratorAndDenominator(Rho)

KC = KineticsConstants();

Psi = 1;
for i =
Psi

H5)
conv(Psi, [1 KC.L(i)1);

=~

end
Phi = zeros(6,6);

for 1 = 1:6
Phi(i,:) = polydiv(Psi, [1 KC.L(i)]);
end
D1 = KC.GenerationTimex[Psi,@]; %This is sxPsi times generation time.
D2 = zeros(1,6);
for 1 = 1:6
D2 = D2 + KC.B(1i).*Phi(i,:);
end
D2 [0,D2,0]; %This is s times the sum times generation time.

D3 = [@,-Rho*xPsixKC.BetaTotall;
Denominator = D1+D2+D3;
Numerator = KC.GenerationTimexPsi;
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The Zero Fission Rate Six Group Reactivity Transfer Function
Approximation

This development provides another look at a time varying reactivity and

it results in methods to measure (or approximate) the parameter % This

is done by developing a frequency domain transfer function whose
magnitude and phase is a function of a perturbation frequency. To make
this measurement, a method for providing an oscillating small reactivity
in a real reactor would be required. In any event we assume an initially
steady state reactor.

We start with the kinetics equations

6
dn(®) _ nO)@—p +zlici(t)
=1

dt A

a A

Now replace the variables with perturbed values as follows:

— 4 Gi(1)

n(t) - ny + on(t)
C(t) - Cy+6C(L)
p(t) = po + op(t)

Ignore all terms which involve products of variations such as
on(t) 6p(t).

Also apply the steady state condition for all the terms in initial values:

6
n —
0= O(IOO ﬂ) +2/1iCi0
i=1

A
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nOﬂi

0= Y A; iCig
This results in:
d(én(t)) on(t)
D = 20 65p(0) + 2D (9, = ) + Doy 46C,(1)

doCi(t) _ on(t)p;
dt

— A4;6C;(t)

Now take the Laplace transform of these equations and solve the system

ings;). Recall that the Laplace

is sY (s). Where s is the Laplace variable, and it

for the transfer function (G(s) =

transform of ——= ( ) ;

becomes jw in the frequency domain. This results in the following:
Mo

G(s) = 7
S(A+Zl 1S_|_l/1) '00

First, we solved for 6 C;(t) in the second equation and substituted into
the first to develop the required ratio.
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In the frequency domain this becomes
Mo

i 6 _Bi _
]w(A+Z":1ja)+/1i) Py

G(Jw) =

This equation may be used to observe several parameters in reactor
testing. Plotting shows some interesting results.

Reactor 6 Group Transfer Function 5 Phase Reactor 6 Group Transfer Fu /", /3 {=]{") ) ©0 ]

Transfer Function Phase Angle Degrees
8 & & & 8

Log10 Magnitude Transfer Function
n w
S tn

Red Line is 3/A, Blue line is 1/3 L ™ /' [RedLLine is 5/, Blue line is -45°

8
AN

8
&

-1 0 1 -1 0
Log 10 Frequency (rad/sec) Log 10 Frequency (rad/sec)

So, if a reactor is presented with a small oscillating reactivity and the
resultant fission rate oscillations magnitude and phase are recorded,

these may be plotted as shown to estimate the parameters  and A. The

. CU ;
point where the magnitude is % occurs at a frequency of 22724/5€¢

21
20.53Hz.

To understand this approximation, assume p, = 0 and put the transfer
function into a one delayed neutron group form:

6 (i) = ny _ nog(jw + 1)
jw(A+jw%) (w)(A(w + 1) + )
G(ja)) __ no(jw + 1) (mjwA+ A4+ B)

 (jw)wAd+ AN+ B) (mjwA+ AA+ B)
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. __ny(w+ D) (—jwd+ A4+ B)
(W) == =Gy + G+ 57

The phase of this transfer function is 45° when the real and imaginary
parts of the numerator are equal:

wp=1A+ 1+ w?A
If the last term on the right-hand side dominates, we have:
w= /A

By setting the real part and imaginary part of the numerator equal we
would have a +45° angle. The factor of 1/j however represents a
rotation of minus 90 degrees yielding the required -45° angle.

To be useful this transfer needs to be in a form where the roots can be
readily computed. This implies that we need a ratio of polynomials.

To put the transfer function in this form we need to multiply numerator
and denominator by the product:

v=| [+

We also compute a matrix:
P =w/(s+ 1)
With this our equation becomes a ratio in polynomials:

no¥

G(jw) = s(WA+ X5, Bidi(i,:)) — Wp,

80



The vector ¥ and the matrix ¢p both have constant sets of polynomial

coefficients.
Sé | S° S4 S3 S2 St SO

] 1 |4.60482 | 536551 [1.77599 [0.183602 | 0.00553084 | 4.37243e-05 ]

¢(1 ) 0 |1 459236 |5.30827 | 1.70983 [0.162291 | 0.00350804
)

¢(2 ) 0 |1 457429 522586 | 1.61645 |0.134254 |0.00143224
)

¢(3 ) 0 |1 4.49341 | 4.86488 |1.23397 |0.0461195 |0.000392446
)

¢(4 ) 0 |1 430352 | 4.06884 | 0.550034 |0.0178747 |0.000145117
)

b(5,:) RE 3.46876 | 1.42477 |0.157357 | 0.00483454 | 3.84875¢-05
..

$(6,:) RE 1.59178 | 0.569413 | 0.0603283 | 0.00183082 | 1.45117¢-05
..

The material in this section has been presented largely for historical
reasons. One does not do this testing of this sort on a fission rate
reactor. Generally, these tests require a specially designed
configuration. This sort of testing was done in the past using test
reactors. None the less, i1t is worthwhile because it has introduced a
method that will use later in analyzing the stability of closed loop reactor
systems where the reactor heats fuel water and both impact reactivity.

Oscillations of Significant Size

The small signal approximation leads to an output fission rate oscillation
with a phase delay relative to the reactivity oscillation. This misses a
real and interesting nonlinear aspect of a reactor’s response to an
oscillating reactivity. The actual output fission rate will oscillate but it
will do so about a rising average.

What follows is an oscillation with a peak reactivity of 0.25f4 and a

frequency of 0.016 Hz.
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Reactor Response to a 0.25f
Oscillation

Reactivity vs. Time (sec)
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Additional Topics:

1. SUR Equation Without the Prompt Jump Assumption and S=0

If we do not allow either the prompt jump assumption or the single
delayed group approximation the startup equation takes the following
form.

An . /ief
_74—,0 +/1€ff,0 +/1€f

;w—m

SUR = 26.06[dpm — sec]

/'1eff

This equation works well for demonstrating the SUR during a rapid
change in reactivity but, near prompt criticality, it can suffer
singularities and fail. The best approach is to calculate the SUR directly
using the six-group reactor kinetics equation solutions as

SUR = 26.06[dpm — sec| n/n

Even for the equation above we need to solve the six-group problem to
obtain the second derivative of n, A, ¢, and the first derivative of A, 5.

The plots below demonstrate a prompt jump (insertion with a tau of
0.5ms). First using the prompt jump corrected equation show in this
section and last, using the version derived above for the variable lambda
effective.
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The first four of these plots are using the prompt jump corrected version of the SUR
equation. The last plot is SUR for the same transient using the corrected lambda
effective derivative method. One can see that the latter case significantly
overestimates the SUR during the transient. In both cases, the six-group group
solution is plotted in red.
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2. Another way to think about the reactor neutron multiplication
process.

Stochastic Fission Chains

05

Suppose we think of what is going on in a reactor as a set of
chains of fissions with each chain initiated by the decay of a
precursor or by introduction of a source neutron. The chance that
one of these neutrons causes a subsequent fission is P =
K.rr(1 — B). The expected value for the length of a chain is given
by:
P

_ YR kPt (@-pP2 1
o ye Pk P 1-p

(1-P)

<k>

This becomes:
1 B 1/Keff

=TTk, AP B-»p

A critical reactor would have an expected chain length of %= 155

fissions.
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Now suppose we consider the number of fissions caused by
precursor decay or source neutron emission in a time At. We
obtain a total number of chain creations as At(Y5_; 4;C; + S).
Putting this together with the expected length of each chain we
get that the total fission rate as:

At
Kerr

(X1 AiCi +5)
B—p

n =

And this is our prompt jump approximation fission rate
expression:

AZ 4G +S5)
n =
F—p
When viewed this way, the prompt jump may be thought of
as a sudden rise in the length of the chains.

Likewise, fission rate turning with a positive reactivity and
a negative reactivity addition rate can be understood. The
positive reactivity implies that the precursor concentrations
are still rising. Hence the chain creation is also rising. The
negative reactivity addition rate will imply that there is a
shortening of the chains. Fission rate will turn when these
two effects balance.
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3. Perturbation approach to calculating a reactivity ramp calculation.

For small transients with a limited reactivity and for a limited time,
we can represent the kinetics equations as:

on

a(é
(Sn(t) _ %5,0@) n /it) (po _ Ig) + 35 L 4,;6C;(b)

dt

doC;(t)  on(t)pf;
dt A

— A4;6C;(t)

We have assumed that any second order variation may be ignored.

In the same vein as we used in developing the prompt jump
equation we can rewrite this as:

iad Apj(0) % C + =2 5p(¢)
—_—= * —

B,
Apj(0) is our 6x6 version of the prompt jump matrix computed

with a zero reactivity. Define the vector of betas as ﬁ . We can
integrate this as before:

t
. n . L ! g
C(t) = eAPtC(0) + ZOeApltJ e~ 4PIt 5p(t) dt'B
0

Now remembering the basics, eP)t is a matrix. It can be put into

diagonal form using the same M matrix that diagonalizes the Apj matrix.
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This means that the task of performing the integration may be greatly
simplified. We can look at the second term as follows.

t

. n . Y -

C(t) = eAPtC(0) + 70MerJtM‘1 J Me=PPit' M~15p(t) dt'B
0

And because M is constant it may be moved outside of the integral.
t

. n . L >
C(t) — eAp]tC(O) _I_ZOMer]tJe—Dp]t 5p(t’) dt,M_lﬁ

0
So, during the rod pull §p(t") = RS = t and after the rod pull it is
constant, 6p(t") = Rho

During the rod pull, the right-hand term becomes, for each eigenvalue,
dk:
RS(edktpu”in‘g - dktpulling - 1)/dI%

In the case that dj, is zero this becomes:

RS
7 tpulling

Once the rod motion stops this contribution to the total effect includes
the integral taken to the limit of the rod pull multiplied by the decaying
ePPIt  This results in the “past moving” part of the integral in that
circumstance. t.,ren: here is measured from the time that the rods
stopped moving.

RS(edktcurrent — (1 + dktpuued)edk(’:current_tpulled))/dlzc

If dy, is zero, this reduces to RS * ty5504°.
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Finally with the pulling stopped we need to add the contribution of the
existing constant reactivity Rho:

Rho * (edktcurrent — 1)
If d}, is zero, this reduces to Rho*t ., ;rent-

So, we wind up with a resulting diagonal matrix D (t) which is a
function of time with its diagonal elements computed using either the
first (moving) equation or the sum of the second two (past moving and
stopped) equations.

So, we can develop the final form of the term as follows

n — —

70 MD(t)M™18
Thus, with the limiting constraint requiring a small Rho and a short time
we have the following ready to exactly compute:

C(t) = ePitC(0) + %Mﬁ(t)M‘lﬁ

While this is interesting, from a practical standpoint we can not so
drastically limit the time of a transient or the amount of reactivity. The
following graph shows the percent error in this expression relative to a
numerically computed solution without the perturbation approximation.
In each case we are allowing the transient to start after ten seconds, pull
rods for ten seconds, and wait after the pull for 40 sec. We are
measuring only the final fission rate after the transient.
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Prompt Jump and Perturbed Ramp Power %Error vs R ivity Fraction
T T T T T —T T T

Reactivity Fraction (p//3)

This approach is interesting in that it can be directly computed but as
may, be seen with only 0.1f of reactivity, the error is 17%. A typically
1DPM startup rate results from 0.258.
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