# Homework 2 ## NUCE 2100 ### Dane Sabo #Homework --- Instructions: Complete the problems below being sure to show your work. If you need to lookup nuclear data from an external source please reference the source in your solutions (once is sufficient). --- 1. Consider the so-called DT (deuterium, tritium) fusion reaction $^2H + ^3H \rightarrow ^HHe + ?$ a. What is the missing product in the reaction? A neutron! b. Calculate the binding energy of $^2H$, $^{3}H$, and $^{4}He$ ```python def binding_energy(mass,z,n): c = 299792458 # m/s h1_mass = 1007825.03190 #micro AMU neutron_mass = 1008664.9159 #mirco AMU mass_defect = (z*h1_mass + n*neutron_mass - mass)/1e6 #micro amu to u energy = (mass_defect*1.6606e-27)*c**2 #amu to kg, answer in J return energy*6.242e12 #Convert J to MeV twoH_mass = 2014101.77784 #micro AMU print("2H Binding Energy:", binding_energy(twoH_mass,1,1), "MeV") threeH_mass = 3016049.281328 #micro AMU print("3H Binding Energy:", binding_energy(threeH_mass,1,2), "MeV") fourHe_mass = 4002603.25413 #micro AMU print("4He Binding Energy:", binding_energy(fourHe_mass,2,2), "MeV") ``` 2H Binding Energy: 2.22482284320947 MeV 3H Binding Energy: 8.482774677373571 MeV 4He Binding Energy: 28.298926363869242 MeV c. Calculate the Q value of the reaction ```python neutron_mass = 1008664.9159 #mirco AMU c = 299792458 # m/s Q = (fourHe_mass + neutron_mass - twoH_mass - threeH_mass)/1e6*1.6606e-27 * c**2 print("Q is ", Q*6.242e12, "MeV") ``` Q is -17.59132884328642 MeV d. Show that the Q value is equal to the change in binding energy ```python Q_from_binding = binding_energy(threeH_mass,1,2) + binding_energy(twoH_mass,1,1) - binding_energy(fourHe_mass,2,2) print("Q from binding is ", Q_from_binding, "MeV") ``` Q from binding is -17.5913288432862 MeV 2. Using atomic mass data, compute the average binding energy per nucleon of the following nuclei: a. $^{6}Li$ b. $^{12}C$ c. $^{51}V$ d. $^{138}Ba$ e. $^{235}U$ [Atomic Mass Data](https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html) ```python sixLi_mass = 6015122.8874 #micro AMU print("6Li Binding Energy:", binding_energy(sixLi_mass,3,3), "MeV") twelveC_mass = 12000000.0 #micro AMU print("12C Binding Energy:", binding_energy(twelveC_mass,6,6), "MeV") fiftyoneV_mass = 50943957.66 #micro AMU print("51V Binding Energy:", binding_energy(fiftyoneV_mass,23,28), "MeV") onethirtyeightBa_mass = 137905247.06 #micro AMU print("138Ba Binding Energy:", binding_energy(onethirtyeightBa_mass,56,82), "MeV") twothirtyfiveU_mass = 235043928.1 #micro AMU print("235U Binding Energy:", binding_energy(twothirtyfiveU_mass,92,143), "MeV") ``` 6Li Binding Energy: 31.997677545325832 MeV 12C Binding Energy: 92.17236586153292 MeV 51V Binding Energy: 445.8977789774969 MeV 138Ba Binding Energy: 1158.4258775508786 MeV 235U Binding Energy: 1784.0708281992524 MeV 3. Compute the atom densities of $^{235}U$ and $^{238}U$ in UO2 of physical density 10.8 g/cm3 if the uranium is enriched to 3.5 w/o in $^{235}U$. ```python twothirtyeightU_mass = 238050786.9 # micro AMU UO2_density = 10.8 #g/cm^3 N_235 = (100-3.5)/3/100 * UO2_density*0.6022e24/(twothirtyfiveU_mass*1e-6) #(abundance of U235 in UO2, remember only 1 U for every 2 O!) * converting to atoms / cm^3 print("There are ", N_235, " 235U atoms per cm^3") N_238 = (3.5)/3/100 * UO2_density*0.6022e24/(twothirtyeightU_mass*1e-6) print("There are ", N_238, " 238U atoms per cm^3") ``` There are 8.900646006519835e+21 235U atoms per cm^3 There are 3.187437478703836e+20 238U atoms per cm^3 4. Calculate the mean free path of 1-eV neutrons in graphite. The total cross section of carbon at this energy is 4.8 b. [Graphite Density Source](https://www.nrc.gov/docs/ML0117/ML011770379.pdf) ```python graphite_density = 1.82 #g/cm^3 graphite_nuclei_density = graphite_density/12.000*0.6022e24 #atoms/cm^3 print("The nuclei density of graphite is ",graphite_nuclei_density," atoms/cm^3") mean_free_path = 1/(4.8*10e-24)/graphite_nuclei_density print("The mean free path is ",mean_free_path,"cm in graphite.") ``` The nuclei density of graphite is 9.133366666666668e+22 atoms/cm^3 The mean free path is 0.22810135729431646 cm in graphite.