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Relevant Reading Assignments

• Sections 6.5 to 6.8 of “Introduction to Nuclear 
Engineering” by Lamarsh and Baratta, 3rd

Edition.

• Chapter 3 of “Nuclear Reactor Analysis” by 
Duderstadt and Hamilton

• Page 100-120 of “Nuclear Engineering: Theory 
and Technology of Commercial Nuclear Power” 
by Knief, 2nd Edition.
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Relevant Reading Assignments

• “Secrecy, simultaneous discovery, and the 
theory of nuclear reactors” by Spencer 
Weart. American Journal of Physics, Vol. 
45(11). November 1977
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Learning Objectives

• Describe the identifying characteristics of a nuclear reactor

• Differentiate among critical, supercritical, and subcritical conditions in a reactor

• Identify the terms in the four and six factor formulas

• Explain the principle of neutron moderation by light nuclei and the importance to thermal 
reactors  

• Understand the impact of heterogeneity on neutron balance

• Describe PWR and BWR fuel assemblies and some of the differences between them

• Differentiate between the infinite (k∞) and effective (keff or k) multiplication factors

• Explain how the terms in the four and six factor formulas may be adjusted to control criticality 
in reactor and processing settings
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Classifying Reactors

• By type of reaction

– Fusion

– Fission (fast neutrons, thermal neutrons)

• By moderator material (thermal reactors only)

– Graphite

– Water (heavy and light)

– Light elements (Be, Li)

• By coolant

– Water (PWR, Heavy Water PWR, BWR, Pool)

– Liquid metal

– Gas cooled

– Molten salt

• By generation (I-IV)

• By use

– Electricity (nuclear power plant)

– Propulsion (marine propulsion)

– Heat (desalination, domestic/industrial heating, 
hydrogen production)

– Transmutation (breeding fuel, isotope production, 
weapons-grade material production)

– Research (training, materials testing)
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Reactor Properties

• Many types of reactors exist but they all share some important 
requirements

– Nuclear fuel (fissile + fissionable)

– Reactivity control mechanisms

– Cooling capability

• Heat created through fission

– Kinetic energy of fission products

– Absorption of fission photons

– Decay heat (radioactive decay)
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Nuclear Power Plants

•8

Nuclear Plant (PWR)

Nuclear Plant (BWR)
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Neutron Economy

• Nuclear reactor core design focuses on the neutron economy 
within a reactor during its operating lifetime

• A successful reactor design must

– Produce enough excess neutrons to keep the chain reaction going

– Limit the number of excess neutrons so that the reaction does not 
become uncontrolled

– Consider thermal and material limits as well!

• Nuclear designers balance neutron sources (fuel) with neutron 
absorbers and leakage, the rate at which neutrons escape from 
the core.
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Neutron Life-Cycle
• Birth: Neutrons are born during fission events

• Lifetime: The lifetime of the neutron is the time between its birth and death. 
During this time the neutron potentially undergoes many scattering reactions 
off of host nuclei in the system

• Death: Neutron death occurs when the neutron leaks from the system or is 
absorbed by a host nuclei (potential triggering a fission reaction).
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Life-Cycle Definition of k

• Accumulation boiled down to single number by defining 
multiplication factor, k

• Measures how many (average) neutrons are produced by each 
neutron born

• Characterizes the chain-reaction

– Each neutron born must itself create at least 1 more neutron 
before being absorbed/leaking to sustain reaction

Number of neutrons in one generation

Number of neutrons in preceding generation
k =
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Criticality 

• Critical: Reactor is static. The number of neutrons from 
generation to generation does not change

• Subcritical: Number of neutrons from generation to generation 
decreases, the reaction eventually dies out

• Supercritical: Number of neutrons from generation to generation 
increases without bound

k<1 subcritical

k=1 critical    

k>1 supercritical
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Determining k

• Finding k is crucial in reactor design

• Today the determination of k is done using 
mathematical theories and computer hardware not 
available to the first reactor designers

• Original theories primarily based on physical 
intuition and written in terms of experimentally 
measurable quantities

• These theories distinguish between infinite (easier to 
quantify) and finite systems (practical)
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Nuclear Reactions

Production = Fission Rate (ΣfΦ)

× Neutrons produced

per fission (ν)

Destruction Rate = Absorption Rate (ΣaΦ)
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Infinite System

• Neutron Balance

– Production Rate  Absorption Rate

– (Infinite) Multiplication Factor

– Simplified model using one energy group

– Everything has been effectively energy averaged

Production Rate

Absorption Rate

f

a

k





= =



f  a 
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235U

238U

Fission

238U

Absorption

Cross Section
(Energy 
Dependence)

16



Stephen R. Tritch
Nuclear Engineering Program

Neutron Scattering
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Neutron Moderator Materials

• Low Z atoms are more effective moderators than high Z atoms

• Most modern reactors use H, D, or C as moderators

 

Neutron Moderation Properties of Selected Atoms and Molecules 

Moderator Target Atomic Mass   (A) Scattering Ratio (α) (1- α) Collisions to Thermal† 

H 1 0.000 1.000 18 
H2O    20 

D 2 0.111 0.889 25 
D2O    35 
Be 9 0.640 0.360 86 
C 12 0.716 0.284 114 
O 16 0.779 0.221 150 

Na 23 0.840 0.160 218 
U 238 0.983 0.017 2148 

†
Average number of collisions to moderate a fast (1 MeV) neutron to a thermal equilibrium energy of 0.025 eV. 
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Infinite Systems

• Consider the life cycle of a single fission neutron, and the different 
paths it can take:

• Born at high energy (fast > 1MeV)

– Some fast neutrons are absorbed and cause fission

• Interacts with moderator to slow down

– Some are absorbed by moderator

• Once the neutron reaches thermal energy it is absorbed

– Only some of the thermal neutrons are absorbed in the fuel.

– Only some of the thermal neutrons absorbed in the fuel cause fission 
events
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Infinite Systems

• Four-Factor Formula for k-infinity

k = e p h f

( )
( )

( )
( )

( )
( )

( )

( ) fuel

th

th

th

fuel

th

total

th

th

total

Eta

f

p

a

f

a

a

a

a

f

f




===




==




==




==


h




e

FactoronReproducti""

FactornUtilizatioThermal

yProbabilitEscapeResonance

FactorFissionFast

20



Stephen R. Tritch
Nuclear Engineering Program

21



Stephen R. Tritch
Nuclear Engineering Program

Infinite Systems

• Four-Factor Formula

k = e p h f
( )
( )

( )
( )

( )
( )

( )

( ) fuel

th

th

th

fuel

th

total

th

th

total

Eta

f

p

a

f

a

a

a

a

f

f




===




==




==




==


h




e

FactoronReproducti""

FactornUtilizatioThermal

yProbabilitEscapeResonance

FactorFissionFast

( )
( )

th

thf
a

f




=


h

( )
( )

totala

totalfk



=

22



Stephen R. Tritch
Nuclear Engineering Program

238U Absorption Cross Section
Importance of Resonance Escape

“Jump” Resonances
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k

Moderator-to-Fuel Ratio Effect on k
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Four-Factor Formula

• Fuel “Lumping” / Lattice Arrangement

– Increase Fast Fission Factor e

– Increase Resonance Escape Probability p

– Decrease Thermal Utilization f

– Pin Diameter and Spacing to optimize p×f

• Similar to previous k vs. M-to-F curve

– Example:  LWR-like lattice
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Effect of
Heterogeneity 

of Fuel & 
Moderator

Slowing Down in Moderator

Fission in 

Fuel

Fission in 

Fuel

Fuel Rods Moderator Channels
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Finite System

• Neutron Balance

Production  Absorption + Leakage

 f   a  + Leakage

Note:  k > keff (To accommodate leakage)

LeakageAbsorption

Production

+
== kkeff
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Six Factor Formula

• Six-Factor Formula

keff = k Pfnl Ptnl

keff = e p h f Pfnl Ptnl

Pfnl = Fast Non-Leakage Probability

Ptnl = Thermal Non-Leakage Probability

keff = e p h f Pnl

Pnl = Total Non-Leakage Probability
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Leakage depends on shape & size (surface-to-volume ratio)

Few Neutrons Leak from 

Volume as Sphere

More Neutrons Leak 

from Volume as Slab

Neutron Leakage Effect
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Reactor Fuel
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PWR Fuel Assembly

UO2 Pellet 
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Reactor Fuel
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BWR Fuel Assembly
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Criticality Control

• No reactor can be constantly 

critical

• Fuel depletion

– Fission removes a fuel atom and 

creates two new atoms

– Transient fission product poisons

• Xenon and Samarium

– Fission product poison build up

• 83Kr, 95Mo, 143Nd, 147Pm

• Temperature (moderator 

density) changes

33
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Creating Neutron Balance

• States of criticality
keff  =  1 Critical
keff  >  1 Supercritical
keff  <  1 Subcritical

• In order to keep an operating nuclear reactor critical we will 
need to “adjust” terms in the neutron balance

• Neutron balance controls

– Production

– Absorption

– Leakage
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Creating Neutron Balance

• Let us consider how we could adjust these parameters to achieve a target keff 
for two different applications

• Nuclear Power Plant

– Target keff:

• keff = 1 for steady-state operation

• keff > 1 for start-up, keff < 1 for shutdown

• Nuclear Fuel Processing Facility

– Target keff:

• keff < 1 under all possible conditions (including accidents)
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Beyond 4 & 6 Factor Formulas

• In a large reactor, different parts of the core may be behaving very differently

– Outer regions of the core will have a large amount of neutrons escaping from the core, 
and will be losing a large fraction of neutrons than are born within the region.

– Neutrons produced in inner regions of the core have little chance of escaping the core.  
These inner regions will effectively produce more neutrons than are needed locally for 
fission.

• For the reactor as a whole to be critical, these local regions must balance each 
other out.

– Different concentrations of neutron densities and reaction rates throughout the core.

– Neutrons “flow” from the center of the core towards the edge.
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Neutron Density

• During steady-state operations there is a natural spatial distribution of 
neutrons throughout the core.

• This natural distribution depends on the shape of the reactor and the 
locations of fissile fuel and neutron poisons in the core

– Peaked in center

– Low near edge of core

– Low density near neutron poisons

• In addition to the gross shape of the neutron density, there are local 
variations that can have a significant effect on the behavior of the core

– Localized peaking is usually limiting condition in core
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Radial Neutron Density
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Axial Flux 
w/ 

Control 
Rods
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Example of 
Energy Dependence
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