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Module Objectives

• Mathematical Concepts

• Heat Transfer Mechanisms

• Ideal Conduction
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Mathematical Concepts
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Gradient

• The gradient of a scalar is a vector

• Points in the direction of maximum rate of change 
(units: quantity per unit length)

• Rectangular Coordinates

• Cylindrical Coordinates
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Laplacian

• Divergence of a vector produces a scalar

• Divergence of a Gradient is known as 
Laplacian
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Laplacian in 1-D

• Generic form:

• Can recover expression for rectangular, 
cylindrical, or spherical coordinates:
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Heat Transfer Mechanisms
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Heat Transfer Modes
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Conduction                  Convection                 Thermal Radiation

Requires:

- Temperature Difference

- Medium to transfer heat

Requires:

- Temperature Difference

- Flowing or moving medium

Requires:

- Temperature Difference

Where does each mode apply to the analysis of a nuclear reactor?

Graphics from: “Incropera, F.P. and Dewitt, D.P.,

Fundamentals of Heat and Mass Transfer, 5th ed. ,

John Wiley & Sons, 2002
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Nuclear Reactor Thermal Analysis
• Need to obtain 

temperature 
distribution within 
fuel element

– Heat generated and 
transferred in fuel 
pellet

– Heat transferred 
through cladding

– Heat transferred to 
coolant

• Let’s start with the 
fuel pellet
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Derivation of the Conduction 
Equation
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Heat Flux

• Flux is a basic concept without definition

• Numerous types

– Mass flux

– Momentum flux (viscous stress)

– Neutron flux

– Energy flux

• Can be a scalar, vector, or tensor all depending on the 
application

– For heat flux, it is a vector normal to the surface of interest
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Heat Flux

• Flux is defined, in 1-D, as:

– Neutron Current (Fick’s Law)

– Mass Diffusion
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Heat Flux

• Heat Flux (Fourier’s Law)

– Quantity of interest is energy

– In words:

– In scalar form (1-D):

– In vector form:

– Component wise (Cartesian coordinates)

13

( )
2

2 3
  

J m d J
Energy Flux Coefficient Energy Density

m s s mdn

    
= −     −    

( )x p

p

d k d dT
q E C T k

dx C dx dx
 


 = − = − = −

( ), ,
dT dT dT

q k i j k k T x y z
dx dy dz

 
 = − + + = −  

 

, ,x y z

dT dT dT
q k q k q k

dx dy dz
  = − = − = −



Stephen R. Tritch
Nuclear Engineering Program

Heat Flux

• Thermal diffusivity

• Ratio of material’s ability to conduct thermal energy relative to store 
thermal energy

– Thermal conductivity

• For an isotropic material:
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Heat Conduction Equation

• Conservation of energy is a combination of 
both mechanical and thermal energy

• Can obtain the thermal energy equation by 
subtracting the mechanical energy equation

– By doing this, what do we assume?

• Laminar flow or solids

• No viscous heating

• Constant pressure and thermal conductivity

15
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Heat Conduction Equation

• Assumptions

– Solid

– No viscous heating and constant pressure

– Control volume constant 
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Heat Conduction Equation

• From Gauss’s Divergence Theorem

– Means the volume integral of the divergence of the heat flux vector 
is equal to the total flux of the vector at the surface
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Conduction Equation
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Derivatives

• Total Derivative:

– where     is the velocity of the observer with 
respect to inertial coordinate system (Euler)

• Material Derivative

– where     is the velocity of the fluid relative to 
the observer 19
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Heat Conduction Equation

• For a flowing liquid/metal:

• For a solid:

• Scalar equation
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Cylindrical Coordinates
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Graphics from: “Incropera, F.P. and Dewitt, D.P.,

Fundamentals of Heat and Mass Transfer, 5th ed. ,

John Wiley & Sons, 2002
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Spherical Coordinates

22

Graphics from: “Incropera, F.P. and Dewitt, D.P.,

Fundamentals of Heat and Mass Transfer, 5th ed. ,

John Wiley & Sons, 2002

•Can be derived in a similar manner. 
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Forms of Conduction Equation

• For a solid with constant k: 

– Steady State

• With heat generation → Poisson’s Equation

• Without heat generation → LaPlace’s Equation

– Transient

• Lumped Capacitance→ Newton’s Equation

• Without heat generation → Fourier’s Equation
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Initial & Boundary Conditions

• Heat conduction equation is 1st order in time

– Requires one initial condition

• Heat conduction equation is 2nd order in space

– Requires two boundary conditions

• 1st kind (Dirichlet) → Constant temperature

• 2nd kind (Neumann) → Specified heat flux at surface

• 3rd kind (Cauchy) → Convective boundary condition

24
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Initial & Boundary Conditions

25
Graphics from: “Incropera, F.P. and Dewitt, D.P.,

Fundamentals of Heat and Mass Transfer, 5th ed. ,

John Wiley & Sons, 2002



Stephen R. Tritch
Nuclear Engineering Program

Interface Constraints

• At interfaces between different materials 
(i.e., fuel & cladding, 
pipe & insulation, etc.), 
must have:

– Continuous temperature

– Continuous Heat Flux

26
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Solving Heat Conduction Eqn.

• Typical assumptions:

– 1-D (neglect axial and azimuthal conduction)

– Steady-State (no storage of heat)

– Volumetric Heat Source is produced uniformly throughout the fuel at a constant rate 

• Treatment of Thermal Conductivity

– Temperature dependent (fuel)

– Temperature independent (cladding)

• How does one calculate the volumetric heat generation rate in nuclear fuel?
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Example 1

• A copper rod is electrically heated such that its 
volumetric heat generation rate is 670 kW/m3. The 
rod is 20cm in diameter and the surface temperature 
of the rod is 140°C. The conductivity of the cooper 
is constant at 390 W/m-K. Determine the steady-
state temperature distribution in the rod and its 
maximum temperature. Neglect azimuthal and axial 
conduction. 

• What happens if the rod was made of stainless steel 
instead (k = 18 W/m-K)

28
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Example 2

• A cylindrical element is composed of two zones. The 
inner zone has a radius of 7/16”, a thermal 
conductivity of 103 BTU/hr-ft-F, and a volumetric 
heat generation rate of 1x106 BTU/hr-ft3.The outer 
zone has a radius of 5/8”, a thermal conductivity of 
46.4 BTU/hr-ft-F, and no heat generation. The rod is 
cooled by convection with the bulk temperature at 
400F and a heat transfer coefficient of 1000 BTU/hr-
ft2-F. Neglecting azimuthal and axial conduction, 
determine the steady state temperature distribution 
in the element.   

29

Give this example a try. We will cover

it in the review session. 


