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Module Objectives

e Mathematical Concepts

e Heat Transfer Mechanisms

e |deal Conduction
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Mathematical Concepts
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Gradient 6

e The gradient of a scalar is a vector

e Points in the direction of maximum rate of change
(units: quantity per unit length)

e Rectangular Coordinates

VT —ﬂl +ﬂj+ﬂk

ox o0y~ 0t
e Cylindrical Coordinates

1= g +1 0 vy

o ' r oo 01
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Laplacian Vz

e Divergence of a vector produces a scalar

= T OT

V- T = _+ay =

e Divergence of a Gradient is known as
Laplacian V(VT)=VT
Rectangular Coordinates Cylindrical Coordinates
2 2 2 2 2
VZT_ﬁT O°T aT VZT_gﬁ Z 126T2+6T2
ox>  Oy° az r ﬁr o”r r-oo° 01
ST 14T
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Laplacian in 1-D Vz

e Generic form:

Sp OS oS

e Can recover expression for rectangular,
cylindrical, or spherical coordinates:

s=X and p=1/x = rectangular
s=r and p=1 = cylindrical

s=r and p=r = spherical
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Heat Transfer Mechanisms
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Heat Transfer Modes

T, {1 = 1o T, L% dss Surface, T
i ‘ /y
- — Moving fluid, 7., —~——
) / \ Surface, T,
—3 q” —_— q” q'l, \ T
—_— [—Ts b g
|
Conduction Convection Thermal Radiation
Requires: Requires: Requires:
- Temperature Difference - Temperature Difference - Temperature Difference

- Medium to transfer heat - Flowing or moving medium

Where does each mode apply to the analysis of a nuclear reactor?

Graphics from: “Incropera, F.P. and Dewitt, D.P.,
Fundamentals of Heat and Mass Transfer, 5" ed. , 8
John Wiley & Sons, 2002
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Nuclear Reactor Thermal Analysis
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|dealized Fuel Rod

Need to obtain
temperature
distribution within
fuel element

— Heat generated and
transferred in fuel
pellet

— Heat transferred
through cladding

— Heat transferred to
coolant

Let’s start with the
fuel pellet
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Derivation of the Conduction
Equation
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Heat Flux

e Flux is a basic concept without definition

e Numerous types

— Mass flux
— Momentum flux (viscous stress)
— Neutron flux

— Energy flux

e (Can be a scalar, vector, or tensor all depending on the
application

— For heat flux, it is a vector normal to the surface of interest

11
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Heat Flux

e Flux is defined, in 1-D, as:

Flux[ quantl_ty }z—Coefficient a.rea} d (quantity density)[quam'ty}
area—time | time |dn volume

— Neutron Current (Fick’s Law)

J, __pY
dn
— Mass Diffusion
. d
- D—
I dnp
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Heat Flux

e Heat Flux (Fourier’s Law)
— Quantity of interest is energy
— In words:

J . Im*|d N
Energy Flux| —; = —Coefficient| — |—( Energy Density )| —
m =3 S Jdn m

— Inscalar form (1-D): « d qT

d
I!:_ _Em:___ CT :—k—
qx “ pC dx('o P ) dx
— |In vector form: P
_ (de dr . dT
q —k

—k |=-kVT (x,Y,
ddedez j (x,y,2)

— Component wise (Cartesian coordinates)
q”__kd_T q”__kd_T q!!__kd_T
" dx - dz 13
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Heat Flux

 Thermal diffusivity
k

o=——
PCy

e Ratio of material’s ability to conduct thermal energy relative to store
thermal energy

— Thermal conductivity

e For an isotropic material:

14
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Heat Conduction Equation

e Conservation of energy is a combination of
both mechanical and thermal energy

e Can obtain the thermal energy equation by
subtracting the mechanical energy equation

— By doing this, what do we assume?
e Laminar flow or solids
e No viscous heating

e Constant pressure and thermal conductivity

15
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Heat Conduction Equation

= Mo}V + [ pu v )res =@[_a+(§_ Pl v | nds + [ pg vV + [[farav
! ! TN !

Time rate of Rate of energy Surface  Viscous Pressure Work Volumetric
change of energy loss by convection heat heating work due to body heat generation
in the volume addition(s) force

e Assumptions
— Solid y_q o4
— No viscous heating and constant pressure Lg[(r— P ).V} ndS =0
— Control volume constant \Z =0

%j\ﬂ(pu)dv =[[-q"ends +qu"'dv

S 16
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Heat Conduction Equation
< (Il pyav = -« s « [[farav

e From Gauss’s Divergence Theorem

[~ oS = [[[-V sqav
S \%
— Means the volume integral of the divergence of the heat flux vector
is equal to the total flux of the vector at the surface

< MMl ou)av = [[[-¥ waav + [[[a"av

dmc T dpc.T(Vol _ _
dE _ame,t _ 9%, (Vo )=—Vo(—kVT)VoI+q”’VoI
dt dt dt

pC LR q”
" dt
17
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Conduction Equation
oE omc,T opc,T

"AXA — = AXAYAZ
z A oo nTa o )
qXAyAz —QyAyAz| |+
| 0, AXAz| : .
y OTV | quxAz —0,AXAz vry +
pC. —VO0 "
/AZ o QIAXAY|, — q/AXAY|
quyAZ‘X q;’AyAz\HAX Z z z+Az
> q"AxAyAz > | 0" AXAYAZ ]
—>X q:: X _q;:|x+Ax ‘ _q Yly+ay
oT AX A
/ $ Ay ,OCp E B ”| ”| y
qZ z _qZ 7+Az "
' AXAZ AX + 2 +q
y y+Ay q;!AXAy‘Z | AZ N
,OC 5T __ 8 (q:)_i(q”)_g(qg)_l_qm
i OX oy’ oz
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Derivatives

e Total Derivative:
dT 8T 8X8T GyaT oz 0T 8T g v oT ol 8T —

Vo, —+V,, —+V,, — vV,[IMT
dt ot ot ox atay T ot ot 7 oy o ot

— where v, is the velocity of the observer with
respect to inertial coordinate system (Euler)

e Material Derivative
DT _or o, ar  ar_ar

— —+V,—
Dt ot ok ay e ot

+VIVT = (2 (v=v, JwT

— where vy is the velocity of the fluid relative to
the observer 19
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Heat Conduction Equation

e For a flowing liquid/metal:

DT m
IOCth:V(kVT)-Fq

e For asolid:

dT oT

Jolo8 i~ — = pC, — - =V (kVT)+q"

e Scalar equation

20
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Cylindrical Coordinates

KVT = ka—T Ea—TJ ka—Tk
or r og 0z

V[(VkT) 16(k gj 128 kaT +a(kaTj
r or or r-og\ o0¢ ) o0z\ oz

q =

l \\\ E«.k i 1
~L ; "\r" "; j/ ﬁ(/‘!) Io

o
dz - ! ‘
AT e
> O e
dp~ j?‘v,_/;f' ~< f‘)ﬁ»\

N .3

Nr..2) dr N LA - 9+ ar
N -
. =

Graphics from: “Incropera, F.P. and Dewitt, D.P.,
Fundamentals of Heat and Mass Transfer, 5" ed. ,
John Wiley & Sons, 2002
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Spherical Coordinates

Can be derived in a similar manner.

ot =k g KTy, K T,
or rofd  rsinf og¢

w22 e T 2T L2 g )
ror or resin"éd og\ o¢ ) r°sin@ oo 06

96 + deo

rsin@ deo

Fundamentals of Heat and Mass Transfer, 5t ed.
John Wiley & Sons, 2002

/7— Graphics from: “Incropera, F.P. and Dewitt, D.P.,

22
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Forms of Conduction Equation

e For a solid with constant k:
8T "
IOCp E: kva +q
— Steady State

e With heat generation = Poisson’s Equation kV*T +q” =0
e Without heat generation = LaPlace’s Equation V*T =0

— Transient

e Lumped Capacitance—> Newton’s Equation o

e Without heat generation = Fourier’s Equation
pC, OT )
RS vES |
k ot 23
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Initial & Boundary Conditions

e Heat conduction equation is 1%t order in time

— Requires one initial condition
T(F,t=0)=f(F)
e Heat conduction equation is 2" order in space
— Requires two boundary conditions
e 1stkind (Dirichlet) = Constant temperature

e 2" kind (Neumann) = Specified heat flux at surface

e 3" kind (Cauchy) = Convective boundary condition

oT

—k—=h(T
8” ( bulk amb) o
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Initial & Boundary Conditions

1. Constant surface temperature T

70,1 = T, (2.24)
T(x, 1)

F>x

2. Constant surface heat flux

N
(a) Finite heat flux k
T %' —> .
—k= |0 = 45 (2.25) 11 0

—x
(b) Adiabatic or insulated surface
oT
9x |1¥=0 =ikl (2.26) T(x, 1)
F—x

3. Convection surface condition

aT| B
~k %> |imo = AT = T(O, 9] (2.27)

by

Graphics from: “Incropera, F.P. and Dewitt, D.P., 25
Fundamentals of Heat and Mass Transfer, 51 ed. ,
John Wiley & Sons, 2002




Stephen R. Tritch
Nuclear Engineering Program

University of Pittshurgh

Interface Constraints

e At interfaces between different materials
(i.e., fuel & cladding,

pipe & insulation, etc.), I ST
must have: : 1 o
. qcond—>1|1

— Continuous temperatu re i i\qng ok

Tleft :Tright : i l l
— Continuous Heat Flux TL Nz, T

qI';ft = q;,ight . i | .

—k dTleft _ dTright L Control surfaces

left right
interface interface

26
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Solving Heat Conduction Eqn.

e Typical assumptions:

— 1-D (neglect axial and azimuthal conduction)
— Steady-State (no storage of heat)

— Volumetric Heat Source is produced uniformly throughout the fuel at a constant rate

e Treatment of Thermal Conductivity

— Temperature dependent (fuel)

— Temperature independent (cladding)

e How does one calculate the volumetric heat generation rate in nuclear fuel?

27
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Example 1

e A copper rod is electrically heated such that its
volumetric heat generation rate is 670 kW/m3. The
rod is 20cm in diameter and the surface temperature
of the rod is 140° C. The conductivity of the cooper
is constant at 390 W/m-K. Determine the steady-
state temperature distribution in the rod and its

maximum temperature. Neglect azimuthal and axial
conduction.

e What happens if the rod was made of stainless steel
instead (k = 18 W/m-K)

28
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Example 2

e A cylindrical element is composed of two zones. The
inner zone has a radius of 7/16”, a thermal
conductivity of 103 BTU/hr-ft-F, and a volumetric
heat generation rate of 1x10° BTU/hr-ft3.The outer
zone has a radius of 5/8”, a thermal conductivity of
46.4 BTU/hr-ft-F, and no heat generation. The rod is
cooled by convection with the bulk temperature at
400F and a heat transfer coefficient of 1000 BTU/hr-
ft>-F. Neglecting azimuthal and axial conduction,
determine the steady state temperature distribution
in the element.

Give this example a try. We will cover

It In the review session. ’



