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Module Objectives

e Decay Heat

e Plant Parameters

e Reactor Design Considerations
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Decay Heat Generation
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Decay Heat

e Following shutdown of the reactor, power does
not immediately drop to zero

— Falls off rapidly following shutdown

e Rate determined by the half-life of the longest lived
delayed neutron (neutrons emitted by neutron decay of
fission products) group

— Power is still produced by the decay of fission
products

e Beta and gamma decays are major contributors
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Decay Heat

e Amount of decay heat is dependent upon the operating history
of the reactor

— Longer operation builds up more fission products to decay and
produces more decay heat

— Larger power levels yield the same effect

e Because of the large amount of decay heat produced following
shutdown, cooling is still essential to prevent fuel damage

— Residual Heat Removal (RHR) systems incorporated to provide
shutdown cooling

e Has decay heat caused major problems in the nuclear industry?
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Decay Heat
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Empirical formulas (where t =t —T, in seconds)

Beta- ~0.4 MeV/B | 3.5 x t1-2 B/s-fission 1.4 x t1-2 MeV/s-fission
particle

Gamma ~0.7 MeV/y | 1.8 x t1-2 y/s-fission 1.26 x t1-2 MeV/s-fission
Total Energy 2.66 x t1-2MeV/s-fission
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Decay Heat
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ANS Decay Heat Standard
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Plant Parameters
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Important Parameters

(1) Reactor thermal power [MW ]: The total heat produced in the reactor core.
(2) Plant electrical output [MW,]: Net electrical power generated by the plant.

Plant Electrical Output
Reactor Thermal Power

(3) Net plant efficiency [%]:

Total Energy Generated Over Time Period
Plant Rating x Time

(4) Plant capacity factor [%)]:

(5) Plant load factor [%]:Average Plant Electrical Power Level
Peak Power Level 1
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Important Parameters

Integrated Electrical Energy Output Capacity
Total Rated Energy Capacity for Period

(6) Plant availability factor [%]:

Reactor Thermal Power
Total Core Volume
Thermal Heat Generated
(8) Linear power [kW/ft]:  Unit Length of Fuel

(7) Core power density [kW/liter]:

(9) Fuel loading [kg]: Total mass of fuel (i.e., fissionable material)

(10) Specific power [kW/kg]: Reactor Thermal Power
Fuel Loading
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Important Parameters

(11) Fuel burnup [MW-days/metric ton uranium = MWD/TU]:
Energy Generated in Fuel During Core Residence
Fuel Loading

(12) Fuel residence time: Fuel Burnup
(Specific Power) * (Capacity Factor)

Amount of Heat Supplied
(13) Heat Rate:  Needed to Generate 1 kWh of Electricity
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Nuclear Reactor Design
Considerations
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Nuclear Reactor Design

An Iterative Process

Dynamic
Response

Nuclear Design Analysis

Fuel Assembly

Control Rod
Assembly Location

In-Core Instrumen it
Location

Reactor Vessel
Thermal Shield
Core Barrel

Surveillance Specimen
Holder Tube

Fission
Densities

Fuel Element & Bundle Design ®

F‘%.l-A Power Plant Ar?alysis

Power Required

Power Capability

eThermal-Hydraulic Analysis

o Power Distribution

Fuel Rod Pitch & Arrangement

e_Fuel Loading & Control Rod Arrangement

Structural Analysis
& Design

Tolerances

Manufacturing

Tolerances

15



Stephen R. Tritch
Nuclear Engineering Program

2, L"ni\‘crsil.\' of Piuslmrg‘h
An Approach to Reactor Thermal-Hydraulic
Analysis

e Basic fuel rod dimensions:

End Plug

— active fuel rod length

Fission Gas
Fission H Capsiile
Gas

— fuel pellet diameter Plenum

L
Volume ‘\\ v
bl
i
i

Holdown Spring

— cladding thickness

—_— gap Size : UG, Pellets

e Avg. power per rod:
<qrod > = <q’”> ><Vfuel

e Total nurrFl)ber of rods:
th _~#rods

(CGros )
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An Approach to Reactor Thermal-
Hydraulic Analysis

e Reactor thermal power represents the amount of heat
that must be removed at steady-state

— Energy balance to determine axial fluid temperature
distribution

— Work inwards using:
e Newton’s Law of Cooling — convection HT

e Fourier’s Law — conduction HT
— Ultimately estimate the fuel centerline temperature

e Acceptable design?
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Core Thermal-Hydraulic Design

e The ability to transfer heat from the fuel
element to coolant determines:

— Power density

— Determines the “size” of the fuel element and reactor
e Must be balanced with criticality implications

— Operating temperatures and coolant flow rates.

e The reactor T-H designer must assure that the
integrity of the fuel cladding is never violated:

— Prevent the release of fission products into the coolant
— Ensures the safe operation of the reactor
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Where does the heat go?

e Nuclear Heat Transfer (focus on PWR’s)

— A nuclear reactor represents a heat source necessary to drive
a thermodynamic power system

— We will investigate the following:

e The thermodynamic cycle that converts heat into work.

—> electricity or other useful form
e The waste heat rejection to the environment

e The heat transfer from the fuel element to the primary coolant
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