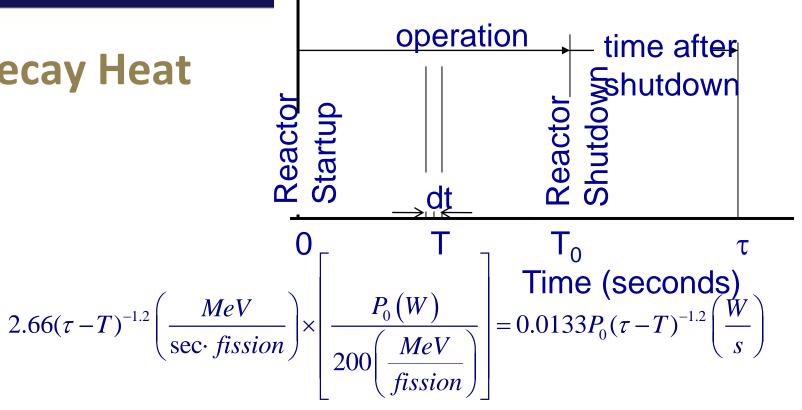
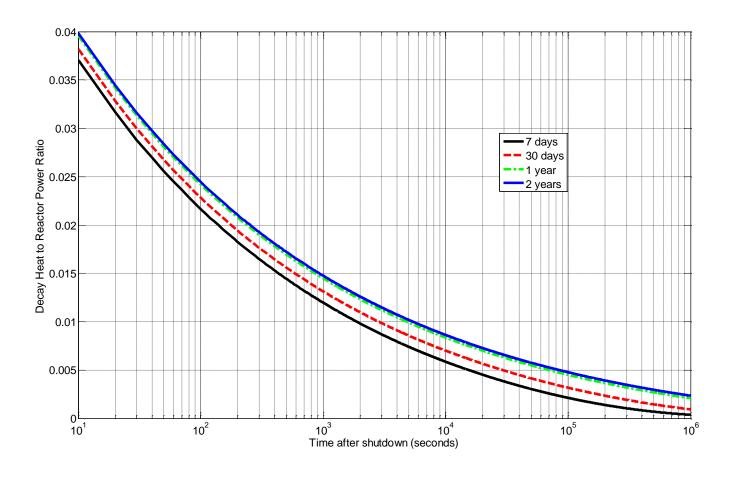

Module Objectives

- Decay Heat
- Plant Parameters
- Reactor Design Considerations

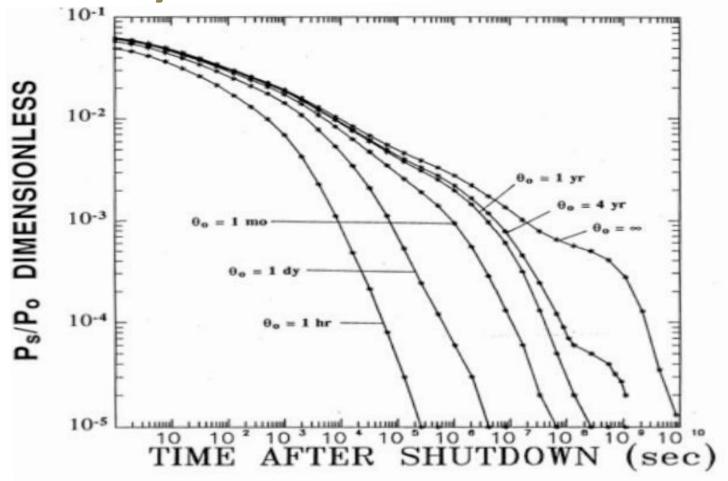
Decay Heat Generation

- Following shutdown of the reactor, power does not immediately drop to zero
 - Falls off rapidly following shutdown
 - Rate determined by the half-life of the longest lived delayed neutron (neutrons emitted by neutron decay of fission products) group
 - Power is still produced by the decay of fission products
 - Beta and gamma decays are major contributors


- Amount of decay heat is dependent upon the operating history of the reactor
 - Longer operation builds up more fission products to decay and produces more decay heat
 - Larger power levels yield the same effect
- Because of the large amount of decay heat produced following shutdown, cooling is still essential to prevent fuel damage
 - Residual Heat Removal (RHR) systems incorporated to provide shutdown cooling
- Has decay heat caused major problems in the nuclear industry?


Empirical formulas (where $t = \tau - T_0$ in seconds)

Beta- particle	~ 0.4 MeV/β	3.5 x t ^{-1.2} β /s-fission	1.4 x t ^{-1.2} MeV/s-fission
Gamma	~0.7 MeV/γ	1.8 x t ^{-1.2} γ/s-fission	1.26 x t ^{-1.2} MeV/s-fission
Total Energy			2.66 x t ^{-1.2} MeV/s-fission
	•		0



$$\begin{split} P_{decay} &= \int_{0}^{T_{0}} 0.0133 P_{0} (\tau - T)^{-1.2} dT = 0.066 P_{0} \Big[(\tau - T_{0})^{-0.2} - \tau^{-0.2} \Big] \\ &\frac{P_{decay} \left(\tau\right)}{P_{0}} = 0.066 \Big[(\tau - T_{0})^{-0.2} - \tau^{-0.2} \Big] \\ &\frac{P_{decay} \left(\tau\right)}{P_{0}} = 0.066 \Big[(t_{\text{after shutdown}})^{-0.2} - \left(t_{\text{operation}} + t_{\text{after shutdown}}\right)^{-0.2} \Big] \end{split}$$

ANS Decay Heat Standard

Plant Parameters

Important Parameters

- (1) Reactor thermal power $[MW_t]$: The total heat produced in the reactor core.
- (2) Plant electrical output [MW_e]: Net electrical power generated by the plant.
- (3) Net plant efficiency [%]: Plant Electrical Output Reactor Thermal Power
- (4) Plant capacity factor [%]: Total Energy Generated Over Time Period Plant Rating x Time

(5) Plant load factor [%]: Average Plant Electrical Power Level
Peak Power Level

Important Parameters

- (6) Plant availability factor [%]: Integrated Electrical Energy Output Capacity
 Total Rated Energy Capacity for Period
- (7) Core power density [kW/liter]: Reactor Thermal Power Total Core Volume

Thermal Heat Generated

- (8) Linear power [kW/ft]: Unit Length of Fuel
- (9) Fuel loading [kg]: Total mass of fuel (i.e., fissionable material)
- (10) Specific power [kW/kg]: Reactor Thermal Power Fuel Loading

Important Parameters

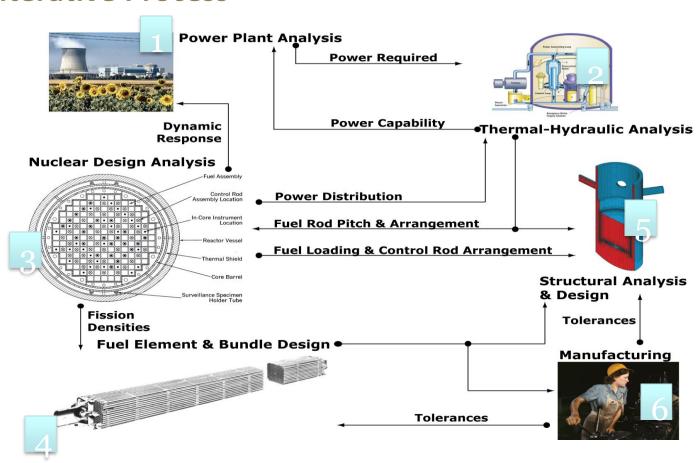
(11) Fuel burnup [MW-days/metric ton uranium = MWD/TU]:

Energy Generated in Fuel During Core Residence
Fuel Loading

(12) Fuel residence time:

Fuel Burnup

(Specific Power) * (Capacity Factor)

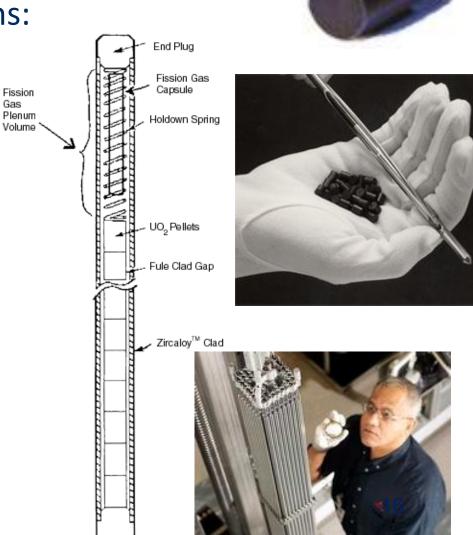

Amount of Heat Supplied

Needed to Generate 1 kWh of Electricity

Nuclear Reactor Design Considerations

Nuclear Reactor Design

An Iterative Process


An Approach to Reactor Thermal-Hydraulic Analysis

- Basic fuel rod dimensions:
 - active fuel rod length
 - fuel pellet diameter
 - cladding thickness
 - gap size
- Avg. power per rod:

$$\left\langle \dot{q}_{rod} \right\rangle = \left\langle \dot{q}''' \right\rangle \times V_{fuel}$$

Total number of rods:

$$\frac{P_{th}}{\left\langle \dot{q}_{rod} \right\rangle} \approx \# rods$$

An Approach to Reactor Thermal-Hydraulic Analysis

- Reactor thermal power represents the amount of heat that must be removed at steady-state
 - Energy balance to determine axial fluid temperature distribution
 - Work inwards using:
 - Newton's Law of Cooling convection HT
 - Fourier's Law conduction HT
 - Ultimately estimate the fuel centerline temperature
 - Acceptable design?

Core Thermal-Hydraulic Design

- The ability to transfer heat from the fuel element to coolant determines:
 - Power density
 - Determines the "size" of the fuel element and reactor
 - Must be balanced with criticality implications
 - Operating temperatures and coolant flow rates.
- The reactor T-H designer must assure that the integrity of the fuel cladding is never violated:
 - Prevent the release of fission products into the coolant
 - Ensures the safe operation of the reactor

Where does the heat go?

- Nuclear Heat Transfer (focus on PWR's)
 - A nuclear reactor represents a heat source necessary to drive a thermodynamic power system
 - We will investigate the following:
 - The thermodynamic cycle that converts heat into work.
 - → electricity or other useful form
 - The waste heat rejection to the environment
 - The heat transfer from the fuel element to the primary coolant