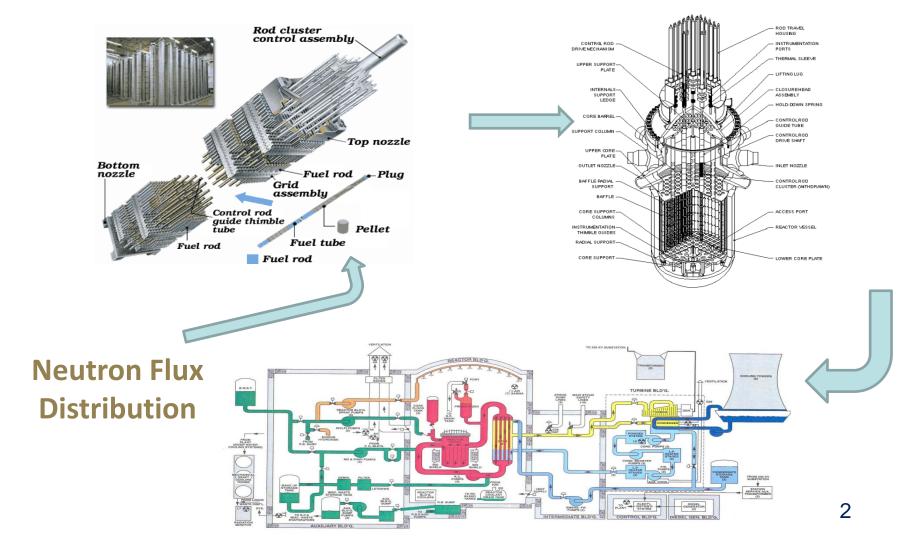


Outline for Thermal-Hydraulics



- Fuel in a nuclear reactor generates heat both during operation and while shutdown
 - During operation → fission heat
 - Shutdown → decay heat
- In order to design a reactor, the rate of heat generation in the fuel at any point in time must be know so that appropriate cooling systems can be designed

Definitions

- Rate of energy generation per fuel rod $q \left[W, \frac{BTU}{hr} \right]$
- Volumetric heat rate $q'''\left[\frac{W}{m^3}, \frac{BTU}{hr ft^3}\right]$
- Surface heat flux $q''\left[\frac{W}{m^2}, \frac{BTU}{hr ft^2}\right]$
- Linear heat rate $q' \left[\frac{W}{m}, \frac{BTU}{hr ft} \right]$
- Core power $Q\left[W, \frac{BTU}{hr}\right]$
- Core power density $Q'''\left[\frac{W}{m^3}, \frac{BTU}{hr ft^3}\right] = \frac{Q}{Vol_{core}}$
- Core specific power $Q'''\left[\frac{W}{kg}, \frac{BTU}{hr-lbm}\right] = \frac{Q}{m_{\text{heavy atoms}}}$

Relationships

$$- q = \iiint q'''(r)dV = \iint \overrightarrow{q''}(S) \bullet \hat{n}dS = \int q'(z)dz$$

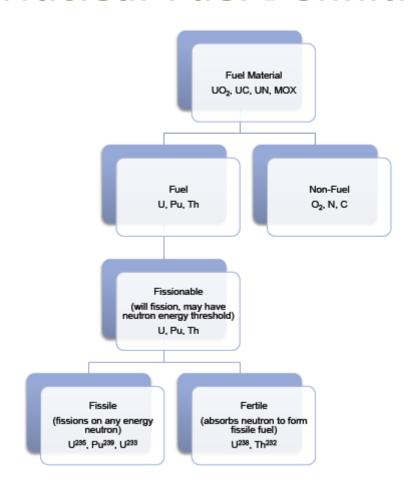
• Remember, surface heat flux is a vector with a magnitude and direction. \hat{n} is the unit vector normal to the surface the heat is traveling through

Core

-
$$Q = \sum_{n=1}^{N_{rods}} q_n$$

- $Q = N \langle q \rangle = N L_{rod} \langle q' \rangle = N \pi D_{rod} L_{rod} \langle q'' \rangle = N \pi R_{fuel}^2 L_{rod} \langle q''' \rangle$

Review of Nuclear Fuel Definitions



	Fission Product	Energy % (MeV)	Description	~ Range	Where
Instantaneous	Fission Fragments	80.5% (161 MeV)	Charged, heavy	0.01 cm	Fuel
	Fast ₀ n ¹	2.5% (5 MeV)	Neutral	~10 cm	Moderator
	Fission γ	2.5% (5 MeV)	Neutral	~100 cm	Structure
	Delay _o n¹	0.02% (~0)	Neutral	~10 cm	Moderator
Delayed	Fission Frag. β	3% (6 MeV)	Charged	Short	Fuel
	Fission Frag. γ	3.0% (6 MeV)	Neutral	~10 cm	Structure
	Neutrinos	5% (10 MeV)	?	Huge	Who knows
Both	Neutron Capture γ & β	3.5% (8 MeV)			Most in fuel

Tally
Fuel
~ 174 MeV

Moderator ~ 5 MeV

Structure ~ 11 MeV

Lost ~ 10 MeV

• The volumetric fission rate $(R_{fission})$ is the product of the neutron flux (ϕ) and the effective $(\overline{\Sigma}_f)$ macroscopic fission cross section

$$q_{fuel}^{\prime\prime\prime}=R_{fission}Q_{fission}=\overline{\Sigma}_{f}\phi Q_{fission}$$

– Reminder: The macroscopic cross section is the product of the number density $(N_{\it ff})$ and microscopic cross section $(\overline{\sigma}_{\it f})$

$$q''' = \overline{\Sigma}_f \phi Q_{fission} = N_{ff} \overline{\sigma}_f \phi Q_{fission}$$

- ullet Fissionable fuel number density $\left(N_{ff}
 ight)$
 - Function of:
 - Fissionable fuel used(U, Pu, or Th)
 - Enrichment
 - Fuel material (UO₂, U+ZrH, etc.) density
 - Does not include cladding or other structural materials

$$N_{ff} = \frac{A_{v}}{M_{ff}} \rho_{ff} i$$

- where: $A_{_{\mathcal{V}}}$ is Avogadro's number, $M_{_{ff}}$ is the molecular mass of the fissionable fuel, ho_{ff} is the density of fissionable fuel, and i is the number of fuel atoms per molecule of fuel

- Fissionable fuel number density (N_{ff})
 - The density of the fissionable fuel (ρ_f) is typically unknown. Can be calculated from either:
 - The fuel density and enrichment, or

$$\rho_{\rm ff} = r \rho_{\rm f}$$

• The <u>fuel material</u> density, fuel mass fraction, and enrichment

$$ho_{\it ff}=rf
ho_{\it fm}$$

ullet where: $oldsymbol{r}$ is the enrichment (mass ratio) and f is the mass fraction of fuel in the fuel material

- Fuel mass fraction (f) cont.
 - When the molecular masses of the fissionable fuel and nonfissionable fuel are approximately equal (ex: U²³⁵ and U²³⁸), simplifies to:

$$f = \frac{rM_{ff} + (1 - r)M_{nf}}{rM_{ff} + (1 - r)M_{nf} + M_{other}}$$

Example

Calculate the fissionable fuel number density for a reactor fueled with U/PuO₂.
 The fuel is enriched to 27%. Assume all of the U is U²³⁸ and the density of the fuel material is 10.5 g/cm³.

- Ans: $N_{\rm ff} = 6.296 \times 10^{21} \text{ atoms/cm}^3$

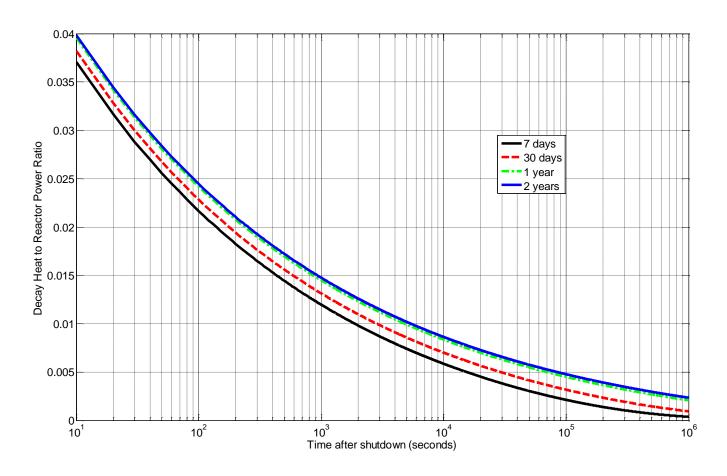
Decay Heat

- Following shutdown of the reactor, power does not immediately drop to zero
 - Falls off rapidly following shutdown
 - Rate determined by the half-life of the longest lived delayed neutron (neutrons emitted by neutron decay of fission products) group
 - Power is still produced by the decay of fission products
 - Beta and gamma decays are major contributors

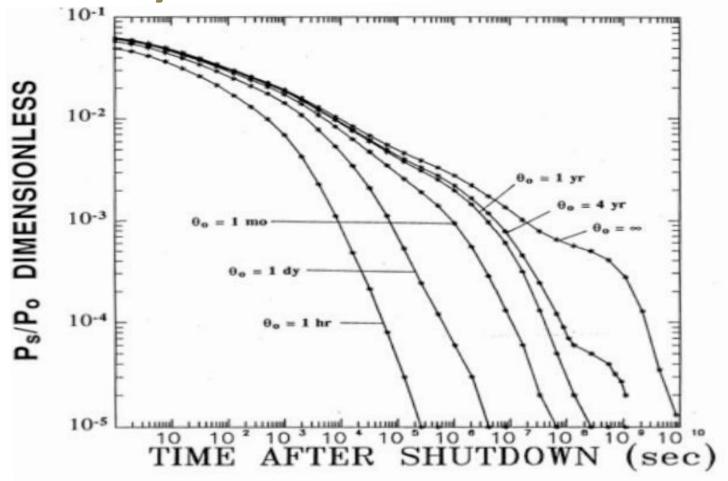
Decay Heat

- Amount of decay heat is dependent upon the operating history of the reactor
 - Longer operation builds up more fission products to decay and produces more decay heat
 - Larger power levels yield the same effect
- Because of the large amount of decay heat produced following shutdown, cooling is still essential to prevent fuel damage
 - Residual Heat Removal (RHR) systems incorporated to provide shutdown cooling
- Has decay heat caused major problems in the nuclear industry?

Decay Heat



ANS Decay Heat Standard



Other Important Parameters

- (1) Reactor thermal power $[MW_t]$: The total heat produced in the reactor core.
- (2) Plant electrical output $[MW_e]$: Net electrical power generated by the plant.
- (3) Net plant efficiency [%]: Plant Electrical Output Reactor Thermal Power
- (4) Plant capacity factor [%]: Total Energy Generated Over Time Period Plant Rating x Time

(5) Plant load factor [%]: Average Plant Electrical Power Level
Peak Power Level

Other Important Parameters

- (6) Plant availability factor [%]: Integrated Electrical Energy Output Capacity
 Total Rated Energy Capacity for Period
- (7) Core power density [kW/liter]: Reactor Thermal Power Total Core Volume

Thermal Heat Generated

- (8) Linear power [kW/ft]: Unit Length of Fuel
- (9) Fuel loading [kg]: Total mass of fuel (i.e., fissionable material)
- (10) Specific power [kW/kg]: Reactor Thermal Power Fuel Loading

Other Important Parameters

(11) Fuel burnup [MW-days/metric ton uranium = MWD/TU]:

Energy Generated in Fuel During Core Residence
Fuel Loading

(12) Fuel residence time:

Fuel Burnup

(Specific Power) * (Capacity Factor)

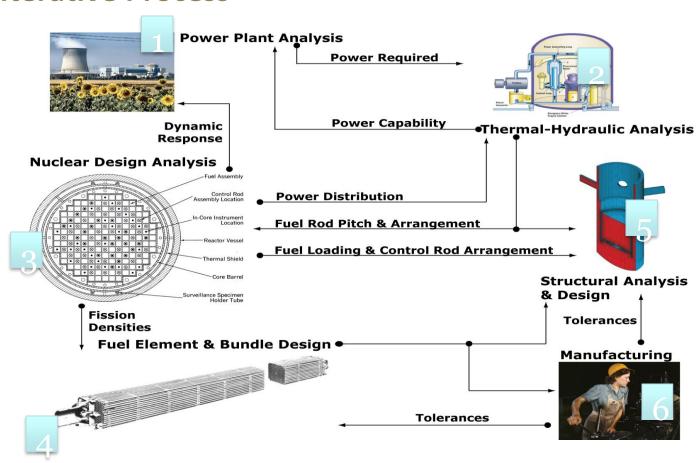
Amount of Heat Supplied

Needed to Generate 1 kWh of Electricity

Nuclear Reactor Design

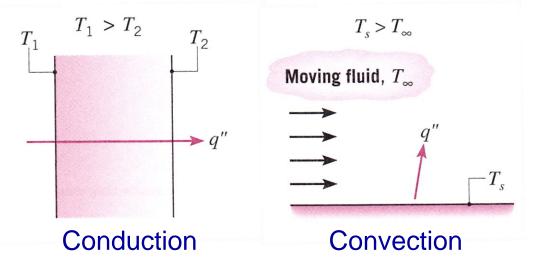
Nuclear Reactor Design

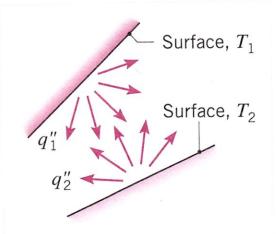
An Iterative Process



Heat Transfer Mechanisms

Heat Transfer Modes





Thermal Radiation

Requires:

Requires:

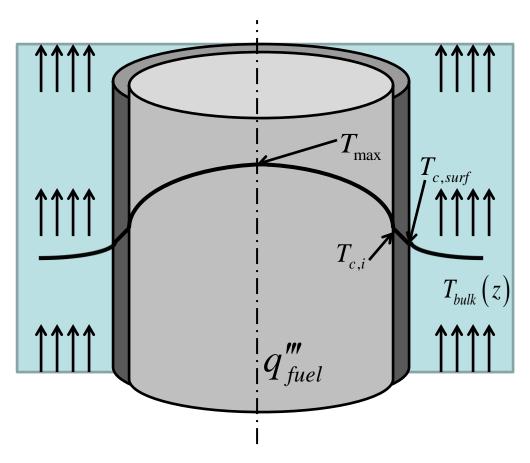
- Temperature Difference

Requires:

- Temperature Difference
- Temperature Difference
- Medium to transfer heat Flowing or moving medium

Where does each mode apply to the analysis of a nuclear reactor?

Nuclear Reactor Thermal Analysis



- Need to obtain temperature distribution within fuel element
 - Heat generated and transferred in fuel pellet
 - Heat transferred through cladding
 - Heat transferred to coolant
- Let's start with the fuel pellet

Idealized Fuel Rod

Derivation of the Conduction Equation

Heat Conduction Equation

$$\frac{d}{dt} \iiint_{V} (\rho u) dV + \iint_{S} \rho u (\overrightarrow{v} - \overrightarrow{v_s}) \bullet \overrightarrow{n} dS = \iiint_{S} [-\overrightarrow{q''} + (\overrightarrow{\tau} - \overrightarrow{pI}) \bullet \overrightarrow{v}] \bullet \overrightarrow{n} dS + \iiint_{V} \rho \overrightarrow{g} \bullet \overrightarrow{v} dV + \iiint_{V} q''' dV$$
Time rate of change of energy loss by convection in the volume

Surface Viscous Pressure Work Volumetric due to body heat generation addition(s)

Assumptions

- Solid $\vec{v} = 0$
- No viscous heating and constant pressure $\iint_{S} \left[\left(\vec{\tau} p\vec{I} \right) \cdot \vec{v} \right] \cdot \vec{n} dS = 0$
- Control volume constant $v_s = 0$

$$\frac{d}{dt} \iiint_{V} (\rho u) dV = \iiint_{S} -\overrightarrow{q''} \bullet \overrightarrow{n} dS + \iiint_{V} q''' dV$$

Heat Conduction Equation

$$\frac{d}{dt} \iiint_{V} (\rho u) dV = \iint_{S} -\overrightarrow{q''} \bullet \overrightarrow{n} dS + \iiint_{V} q''' dV$$

From Gauss's Divergence Theorem

$$\iiint\limits_{S} -\overrightarrow{q''} \bullet \overrightarrow{n} dS = \iiint\limits_{V} -\overrightarrow{\nabla} \bullet \overrightarrow{q''} dV$$

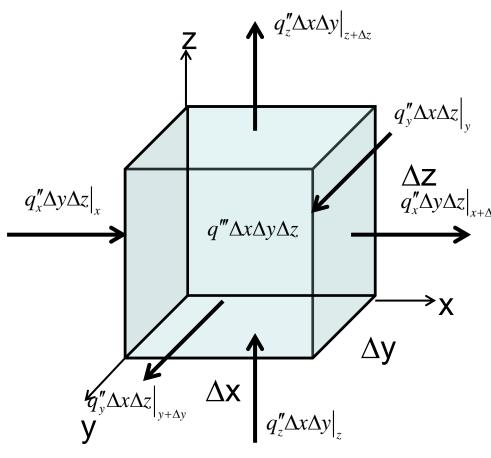
 Means the volume integral of the divergence of the heat flux vector is equal to the total flux of the vector at the surface

$$\frac{d}{dt} \iiint_{V} (\rho u) dV = \iiint_{V} -\overrightarrow{\nabla} \bullet \overrightarrow{q''} dV + \iiint_{V} q''' dV$$

$$\frac{dE}{dt} = \frac{dmc_{p}T}{dt} = \frac{d\rho c_{p}T(Vol)}{dt} = -\overrightarrow{\nabla} \bullet (-k\overrightarrow{\nabla}T)Vol + q'''Vol$$

$$\rho c_{p} \frac{dT}{dt} = k\nabla^{2}T + q'''$$

Conduction Equation



$$\frac{\partial E}{\partial t} = \frac{\partial mc_{p}T}{\partial t} = \frac{\partial \rho c_{p}T}{\partial t} \left(\Delta x \Delta y \Delta z \right)$$

$$\frac{q_{y}'' \Delta x \Delta z|_{y}}{\rho c_{p}} \frac{\partial T}{\partial t} Vol = \begin{bmatrix} q_{x}'' \Delta y \Delta z|_{x} - q_{x}'' \Delta y \Delta z|_{x+\Delta x} + \\ q_{y}'' \Delta x \Delta z|_{y} - q_{y}'' \Delta x \Delta z|_{y+\Delta y} + \\ q_{z}'' \Delta x \Delta y|_{z} - q_{z}'' \Delta x \Delta y|_{z+\Delta z} + \\ q_{z}''' \Delta x \Delta y \Delta z \end{bmatrix}$$

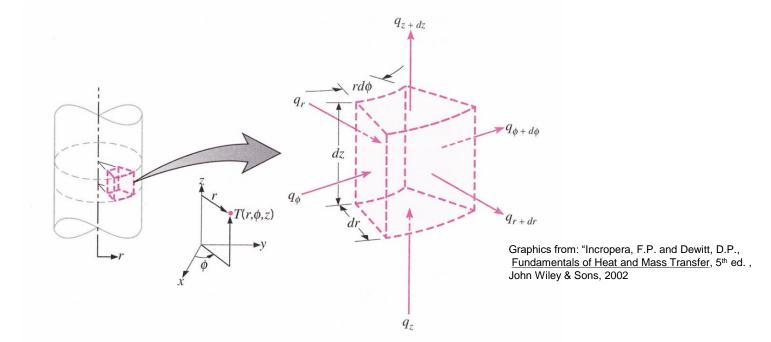
$$\rho c_{p} \frac{\partial T}{\partial t} = \begin{bmatrix} \frac{q''_{x}|_{x} - q''_{x}|_{x+\Delta x}}{\Delta x} + \frac{q''_{y}|_{y} - q''_{y}|_{y+\Delta y}}{\Delta y} \\ + \frac{q''_{z}|_{z} - q''_{z}|_{z+\Delta z}}{\Delta z} + q''' \end{bmatrix}$$

$$\rho c_p \frac{\partial T}{\partial t} = -\frac{\partial}{\partial x} (q_x'') - \frac{\partial}{\partial y} (q_y'') - \frac{\partial}{\partial z} (q_z'') + q'''$$

Cylindrical Coordinates

$$k\overrightarrow{\nabla}T = k\frac{\partial T}{\partial r}\hat{i} + \frac{k}{r}\frac{\partial T}{\partial \phi}j + k\frac{\partial T}{\partial z}k$$

$$\nabla \Box \left(\nabla kT \right) = \frac{1}{r} \frac{\partial}{\partial r} \left(kr \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\partial \phi} \left(k \frac{\partial T}{\partial \phi} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right)$$

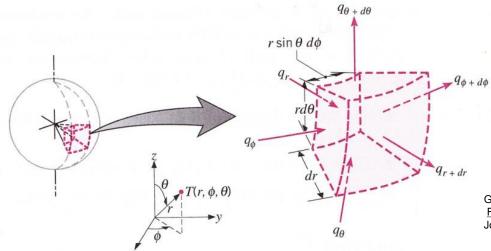


Spherical Coordinates

Can be derived in a similar manner.

$$k \overrightarrow{\nabla} T = k \frac{\partial T}{\partial r} \hat{i} + \frac{k}{r} \frac{\partial T}{\partial \theta} j + \frac{k}{r \sin \theta} \frac{\partial T}{\partial \phi} k$$

$$\nabla \Box \left(\nabla kT\right) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(kr^2 \frac{\partial T}{\partial r}\right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \phi} \left(k \frac{\partial T}{\partial \phi}\right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(k \sin \theta \frac{\partial T}{\partial \theta}\right)$$

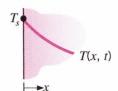


Graphics from: "Incropera, F.P. and Dewitt, D.P., Fundamentals of Heat and Mass Transfer, 5th ed. John Wiley & Sons, 2002

Initial & Boundary Conditions

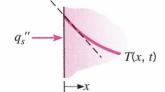
1. Constant surface temperature

$$T(0,t) = T_s$$



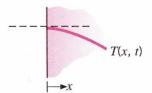
- Constant surface heat flux
 - (a) Finite heat flux

$$-k\frac{\partial T}{\partial x}\Big|_{x=0} = q_s''$$



(b) Adiabatic or insulated surface

$$\left| \frac{\partial T}{\partial x} \right|_{x=0} = 0$$



3. Convection surface condition

$$-k\frac{\partial T}{\partial x}\Big|_{x=0} = h[T_{\infty} - T(0, t)]$$

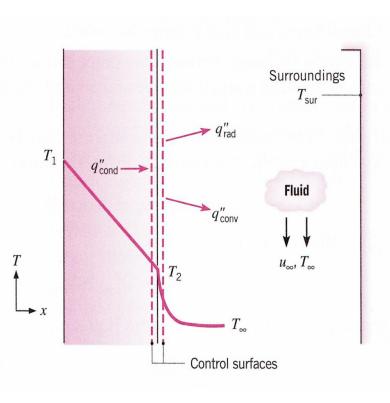
Interface Constraints

At interfaces between different materials

(i.e., fuel & cladding, pipe & insulation, etc.), must have:

- Continuous temperature $T_{left} = T_{right}$
- Continuous Heat Flux

$$q_{left}'' = q_{right}''$$
 $-k_{left} \frac{dT_{left}}{dr} \bigg|_{\text{interface}} = -k_{right} \frac{dT_{right}}{dr} \bigg|_{\text{in}}$



Example 1

- A copper rod is electrically heated such that its volumetric heat generation rate is 670 kW/m³. The rod is 20cm in diameter and the surface temperature of the rod is 140° C. The conductivity of the cooper is constant at 390 W/m-K. Determine the steadystate temperature distribution in the rod and its maximum temperature. Neglect azimuthal and axial conduction.
- What happens if the rod was made of stainless steel instead (k = 18 W/m-K)

Example 2

 A cylindrical element is composed of two zones. The inner zone has a radius of 7/16", a thermal conductivity of 103 BTU/hr-ft-F, and a volumetric heat generation rate of 1x10⁶ BTU/hr-ft³. The outer zone has a radius of 5/8", a thermal conductivity of 46.4 BTU/hr-ft-F, and no heat generation. The rod is cooled by convection with the bulk temperature at 400F and a heat transfer coefficient of 1000 BTU/hrft²-F. Neglecting azimuthal and axial conduction, determine the steady state temperature distribution in the element.