(&) University of Pittsburgh

- o
vvvvvvv

ME/ENGR 2100
Fundamentals of
Nuclear Engineering

Thermal-Hydraulics Applied to Nuclear Reactors
Module 8 Review
Dr. Meholic

Stephen R. Tritch Program in Nuclear Engineering
Swanson School of Engineering

University of Pittsburgh




University of ]’ittsl)urgh

8
2 ;

Stephen R. Tritch
Nuclear Engineering Program

Outline for Thermal-Hydraulics

Rod cluster

control assemb!yy‘,

Bottom
nozzle

) W Pellet
" Fuel tube

- Fuel rod

Neutron Flux
Distribution

[

—>

INSTRUMENTATION
THBABLE GUIDES

CONTROL ROD
FiIVE MEC HAHISM

INTERMAL:

SUPFORT
LEDGE

CORE BAFREL

UPPORT COLUMN

UPPER CORE.
PLATE

OUTLET HOZZLE

B FLE RADIAL
SUPPORT

BAFFLE

CORE SUPPORT

COLUNNS

RADIAL SUPRORT

CORE SUPPORT

ROD TRAVEL
HOUSHG

INSTRUMENTATION
PORTS

THERMAL §LEEVE

LIFTINGLUG

CLOSUREHEAD

ASTEMBLY

HOLD-DOWN SPRING

CONTROLROD

GUIDE TUBE

CONTROLROD
DRIVE SHAFT

INLET NOZLE

CONTROLROD
CLUSTER (WTHDRAATN)

ACCESS PORT

REACTOR VESSEL

LOWER CORE PLATE




Stephen R. Tritch
Nuclear Engineering Program

) University of Pittsburgh

Nuclear Heat Generation



Stephen R. Tritch

S
-
<>

Q;’ University ot Pittsburgh Nuclear Engineering Program [R5

Nuclear Heat Generation

e Fuel in a nuclear reactor generates heat
both during operation and while shutdown

— During operation = fission heat

— Shutdown = decay heat

e In order to design a reactor, the rate of heat
generation in the fuel at any point in time
must be know so that appropriate cooling

systems can be designed .
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Nuclear Heat Generation

e Definitions

, BTU
— Rate of energy generation per fuel rod - q[W,ﬁ}

. o W BTU
— Volumetric heat rate — ¢ {F’hr—fﬁ}

W BTU
— Surface heat flux — ¢ {mz,hr_ﬂz}

— Linear heat rate — q’{vl 51U }

m  hr— ft
BTU

— Core power — Q{W,?}

Q" W BTU B Q
m® hr— ft® | Vol

— Core power density —

core

o W  BTU Q
— Core specific power — Q" i Tpn 1

mheavy atoms 5



Stephen R. Tritch
Nuclear Engineering Program

University of Pittshurgh

Nuclear Heat Generation

e Relationships

- q=[[[a"(ndv = [[a"(S)efdS = [ q'(2)dz

e Remember, surface heat flux is a vector with a magnitude and
direction. fj is the unit vector normal to the surface the heat is
traveling through

e Core
rods

Q=Y g,
Q=N{q)=NL,, (') = NzD,, L, (q") = NZRZ, L, (q")

rod —rod fuel =rod
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Review of Nuclear Fuel Definitions

Fuel Material
l LI, LIC, UM, MOX

Fuel Mon-Fuel

l U, Pu. Th l Oy N.C

Fissionable
{wall fission, may hawve
neutron energy threshold)
l U, Pu, Th

Fissile Fertile
i ‘absarbs ftron to fo
{ﬁsﬂmsmul}hm enengy { neufuel:l m
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Fission Heat

% (MeV) Fuel

o Fission 80.5% Charged, heavy 0.01 cm
2 Fragments 161 MeV
g 9 (161 Met) ~ 174 MeV
& Fastgn' 2.5% Meutral ~10 cm Moderator
E (5 MeV)
2 Fission y 2.5% Meutral ~100 cm Structure
(5 MeV) Moderator
Delay gn! 0.02% Heutral ~10 cm Moderator
-0) ~ 5 MeV
E‘ Fission Frag. 3% Charged Short Fuel
% (6 MeV)
O Fission Frag. v 3.0% Meutral -10 cm Structure Structure
— ~ 11 MeV
Heutrinos 2% ? Huge Who knows
(10 MeV)
= Heutron 3.5% Most in fuel
B Capture (8 MeV) | ost
T&pB
~ 10 MeV
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Fission Heat

e The volumetric fission rate (Rﬁssion) is the prc_)duct
of the neutron flux (¢) and the effective (=)
macroscopic fission cross section

m o v
qfuel T Rfissioncgfission T Zf¢(gfission

— Reminder: The macroscopic cross section is the
product of the number den_sity(Nff ) and
MICroscopic cross section (o'

qm: E f ¢inssion — N ff Ef¢inssion
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Fission Heat

e Fissionable fuel number density (N , )
— Function of:
e Fissionable fuel used(U, Pu, or Th)
e Enrichment

e Fuel material (UO,, U+ZrH, etc.) density

— Does not include cladding or other structural materials

A, :
Ny =——py!
M ¢

— where: A\/ is Avogadro’s number, M ff is the molecular mass of the fissionable fuel, ,Oﬁ is the density

of fissionable fuel, and | is the number of fuel atoms per molecule of fuel

10
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Fission Heat

e Fissionable fuel number density (N )

— The density of the fissionable fuel(pﬁ ) is typically
unknown. Can be calculated from either:

e The fuel density and enrichment, or
Py =T Pq

e The fuel material density, fuel mass fraction, and enrichment

Py =1 o,

e where: I is the enrichment (mass ratio) and f is the mass fraction of fuel in the fuel
material

11
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Fission Heat

e Fuel mass fraction (f) cont.

— When the molecular masses of the fissionable
fuel and nonfissionable fuel are approximately
equal (ex: U%3> and U?%38), simplifies to:

M. +@Q-r)M
M, +(1-)M_ +M

other

12
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Example

e Calculate the fissionable fuel number density for a reactor fueled with U/PuO,.
The fuel is enriched to 27%. Assume all of the U is U%38 and the density of the
fuel material is 10.5 g/cm3.

— Ans: N =6.296 x 10%t atoms/cm3

13
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Decay Heat

e Following shutdown of the reactor, power does
not immediately drop to zero

— Falls off rapidly following shutdown

e Rate determined by the half-life of the longest lived
delayed neutron (neutrons emitted by neutron decay of
fission products) group

— Power is still produced by the decay of fission
products

e Beta and gamma decays are major contributors

14
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Decay Heat

e Amount of decay heat is dependent upon the operating history
of the reactor

— Longer operation builds up more fission products to decay and
produces more decay heat

— Larger power levels yield the same effect

e Because of the large amount of decay heat produced following
shutdown, cooling is still essential to prevent fuel damage

— Residual Heat Removal (RHR) systems incorporated to provide
shutdown cooling

e Has decay heat caused major problems in the nuclear industry?

15
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Decay Heat
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ANS Decay Heat Standard
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Other Important Parameters

(1) Reactor thermal power [MW ]: The total heat produced in the reactor core.
(2) Plant electrical output [MW,]: Net electrical power generated by the plant.

Plant Electrical Output
Reactor Thermal Power

(3) Net plant efficiency [%]:

Total Energy Generated Over Time Period
Plant Rating x Time

(4) Plant capacity factor [%]:

(5) Plant load factor [%]:Average Plant Electrical Power Level
Peak Power Level

18
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Other Important Parameters

Integrated Electrical Energy Output Capacity
Total Rated Energy Capacity for Period

(6) Plant availability factor [%]:

Reactor Thermal Power
Total Core Volume
Thermal Heat Generated
(8) Linear power [kW/ft]:  Unit Length of Fuel

(7) Core power density [kW/liter]:

(9) Fuel loading [kg]: Total mass of fuel (i.e., fissionable material)

(10) Specific power [kW/kg]: Reactor Thermal Power
Fuel Loading

19
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Other Important Parameters

(11) Fuel burnup [MW-days/metric ton uranium = MWD/TU]:
Energy Generated in Fuel During Core Residence
Fuel Loading

(12) Fuel residence time: Fuel Burnup
(Specific Power) * (Capacity Factor)

Amount of Heat Supplied
(13) Heat Rate:  Needed to Generate 1 kWh of Electricity

20
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Nuclear Reactor Design
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Nuclear Reactor Design

An Iterative Process

Dynamic
Response

Nuclear Design Analysis

Fuel Assembly

Control Rod
Assembly Location

In-Core Instrumen it
Location

Reactor Vessel
Thermal Shield
Core Barrel

Surveillance Specimen
Holder Tube

Fission
Densities

Fuel Element & Bundle Design ®

F‘%.l-A Power Plant Ar?alysis

Power Required

Power Capability

eThermal-Hydraulic Analysis

o Power Distribution

Fuel Rod Pitch & Arrangement

e_Fuel Loading & Control Rod Arrangement

Structural Analysis
& Design

Tolerances

Manufacturing

Tolerances
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Heat Transfer Mechanisms
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Heat Transfer Modes

T, {1 = 1o T, L% dss Surface, T
i ‘ /y
- — Moving fluid, 7., —~——
) / \ Surface, T,
—3 q” —_— q” q'l, \ T
—_— [—Ts b g
|
Conduction Convection Thermal Radiation
Requires: Requires: Requires:
- Temperature Difference - Temperature Difference - Temperature Difference

- Medium to transfer heat - Flowing or moving medium

Where does each mode apply to the analysis of a nuclear reactor?

Graphics from: “Incropera, F.P. and Dewitt, D.P.,
Fundamentals of Heat and Mass Transfer, 5™ ed. , 24
John Wiley & Sons, 2002
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Nuclear Reactor Thermal Analysis

M

M

c,surf

1

1
il

|dealized Fuel Rod

Need to obtain
temperature
distribution within
fuel element

— Heat generated and
transferred in fuel
pellet

— Heat transferred
through cladding

— Heat transferred to
coolant

Let’s start with the
fuel pellet
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Derivation of the Conduction
Equation
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Heat Conduction Equation

= Mo}V + [ pu v )res =@[_a+(§_ Pl v | nds + [ pg vV + [[farav
! ! TN !

Time rate of Rate of energy Surface  Viscous Pressure Work Volumetric
change of energy loss by convection heat heating work due to body heat generation
in the volume addition(s) force

e Assumptions
— Solid y_q o4
— No viscous heating and constant pressure Lg[(r— P ).V} ndS =0
— Control volume constant \Z =0

%j\ﬂ(pu)dv =[[-q"ends +qu"'dv

S 27
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Heat Conduction Equation
< (Il pyav = -« s « [[farav

e From Gauss’s Divergence Theorem

[~ oS = [[[-V sqav
S \%
— Means the volume integral of the divergence of the heat flux vector
is equal to the total flux of the vector at the surface

< MMl ou)av = [[[-¥ waav + [[[a"av

dmc T dpc.T(Vol _ _
dE _ame,t _ 9%, (Vo )=—Vo(—kVT)VoI+q”’VoI
dt dt dt

pC LR q”
" dt
28
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Conduction Equation
oE omc,T opc,T

"AXA — = AXAYAZ
z A oo nTa o )
qXAyAz —QyAyAz| |+
| 0, AXAz| : .
y OTV | quxAz —0,AXAz vry +
pC. —VO0 "
/AZ o QIAXAY|, — q/AXAY|
quyAZ‘X q;’AyAz\HAX Z z z+Az
> q"AxAyAz > | 0" AXAYAZ ]
—>X q:: X _q;:|x+Ax ‘ _q Yly+ay
oT AX A
/ $ Ay ,OCp E B ”| ”| y
qZ z _qZ 7+Az "
' AXAZ AX + 2 +q
y y+Ay q;!AXAy‘Z | AZ N
,OC 5T __ 8 (q:)_i(q”)_g(qg)_l_qm
i OX oy’ oz
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Cylindrical Coordinates

KVT = ka—T Ea—TJ ka—Tk
or r og 0z

V[(VkT) 16(k gj 128 kaT +a(kaTj
r or or r-og\ o0¢ ) o0z\ oz

4 =3
l \\\ E‘" K 1
~L ; "\r" "; j/ > (/(,') Io
i il |
dz - ! ‘
/fl‘ /;V i | \\\ ;
= O e
RTINS
N 4
Nr..2) dr > LA -7 4y + dr
s ’
- =

|

| Graphics from: “Incropera, F.P. and Dewitt, D.P.,

‘ Fundamentals of Heat and Mass Transfer, 5t ed. ,
|

John Wiley & Sons, 2002
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Spherical Coordinates

Can be derived in a similar manner.

ot =k g KTy, K T,
or rofd  rsinf og¢

w22 e T 2T L2 g )
ror or resin"éd og\ o¢ ) r°sin@ oo 06

96 + deo

rsin@ deo

Fundamentals of Heat and Mass Transfer, 5t ed.
John Wiley & Sons, 2002

/7— Graphics from: “Incropera, F.P. and Dewitt, D.P.,

31
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Initial & Boundary Conditions

1. Constant surface temperature T

70,1 = T, (2.24)
T(x, 1)

F>x

2. Constant surface heat flux

N
(a) Finite heat flux k
T %' —> .
—k= |0 = 45 (2.25) 11 0

—x
(b) Adiabatic or insulated surface
oT
9x |1¥=0 =ikl (2.26) T(x, 1)
F—x

3. Convection surface condition

aT| B
~k %> |imo = AT = T(O, 9] (2.27)

by

Graphics from: “Incropera, F.P. and Dewitt, D.P., 32
Fundamentals of Heat and Mass Transfer, 51 ed. ,
John Wiley & Sons, 2002
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Interface Constraints

e At interfaces between different materials
(i.e., fuel & cladding,

pipe & insulation, etc.), I ST
must have: : 1 o
. qcond—>1|1

— Continuous temperatu re i i\qng ok

Tleft :Tright : i l l
— Continuous Heat Flux TL Nz, T

qI';ft = q;,ight . i | .

—k dTleft _ dTright L Control surfaces

left right
interface interface

33
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Example 1

e A copper rod is electrically heated such that its
volumetric heat generation rate is 670 kW/m3. The
rod is 20cm in diameter and the surface temperature
of the rod is 140° C. The conductivity of the cooper
is constant at 390 W/m-K. Determine the steady-
state temperature distribution in the rod and its

maximum temperature. Neglect azimuthal and axial
conduction.

e What happens if the rod was made of stainless steel
instead (k = 18 W/m-K)

34
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Example 2

e A cylindrical element is composed of two zones. The
inner zone has a radius of 7/16”, a thermal
conductivity of 103 BTU/hr-ft-F, and a volumetric
heat generation rate of 1x10° BTU/hr-ft3.The outer
zone has a radius of 5/8”, a thermal conductivity of
46.4 BTU/hr-ft-F, and no heat generation. The rod is
cooled by convection with the bulk temperature at
400F and a heat transfer coefficient of 1000 BTU/hr-
ft>-F. Neglecting azimuthal and axial conduction,
determine the steady state temperature distribution
in the element.

35



