
Stephen R. Tritch
Nuclear Engineering Program

ME/ENGR 2100 

Fundamentals of Nuclear 
Engineering 

Fission Reactor Basics:

Criticality Control

Stephen R. Tritch Program in Nuclear Engineering
Swanson School of Engineering
University of Pittsburgh



Stephen R. Tritch
Nuclear Engineering Program

Relevant Reading Assignments

• Sections 6.5 to 6.8 of “Introduction to Nuclear 
Engineering” by Lamarsh and Baratta, 3rd

Edition.

• Chapter 3 of “Nuclear Reactor Analysis” by 
Duderstadt and Hamilton

• Page 100-120 of “Nuclear Engineering: Theory 
and Technology of Commercial Nuclear Power” 
by Knief, 2nd Edition.
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Relevant Reading Assignments

• “Secrecy, simultaneous discovery, and the 
theory of nuclear reactors” by Spencer 
Weart. American Journal of Physics, Vol. 
45(11). November 1977
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Learning Objectives

• Explain how the terms in the four and six 
factor formulas may be adjusted to control 
criticality in reactor and processing settings
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Criticality Control

• No reactor can be constantly 

critical

• Fuel depletion

– Fission removes a fuel atom and 

creates two new atoms

– Transient fission product poisons

• Xenon and Samarium

– Fission product poison build up

• 83Kr, 95Mo, 143Nd, 147Pm

• Temperature (moderator 

density) changes
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Creating Neutron Balance

• States of criticality
keff  =  1 Critical
keff  >  1 Supercritical
keff  <  1 Subcritical

• In order to keep an operating nuclear reactor critical we will 
need to “adjust” terms in the neutron balance

• Neutron balance controls

– Production

– Absorption

– Leakage
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Creating Neutron Balance

• Let us consider how we could adjust these parameters to achieve a target keff 
for two different applications

• Nuclear Power Plant

– Target keff:

• keff = 1 for steady-state operation

• keff > 1 for start-up, keff < 1 for shutdown

• Nuclear Fuel Processing Facility

– Target keff:

• keff < 1 under all possible conditions (including accidents)
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Neutron Balance (Reactor)

• Reactor Criticality Requirements

– Operation Modes

• Power Reactors (Startup / Steady-State / Shutdown)

• Some Research Reactors (Pulse Mode)

• All reactors have emergency shutdown (SCRAM) capability

– Routine adjustments to reactor criticality are required

• Account for power fluctuations and feedback effects

– Fuel depletion, density changes of moderator

• Small frequent adjustments: control rods (in PWR)

• Larger, planned, adjustments: soluble boron (in PWR)

• BWR reactors use control rods and coolant flow feedback to adjust criticality. 
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Neutron Balance (Reactor)

• Nuclear Reactor

– Production

• Determined by the total fissile content of the core.

• Initial fuel loading.

• Conversion of fertile nuclides (breeding).

• Refueling

– On-line or Shutdown
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Neutron Balance (Reactor)

• Nuclear Reactor

– Production

• For a modern commercial PWR core:

– Ceramic UO2 pellets using Uranium that has been enriched to 
3-5 wt % 235U.

– 10-30% of power produced in a PWR is due to Plutonium bred 
in the reactor

– Currently reactors operate 18-24 months between refuelings
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Neutron Balance (Reactor)

• Nuclear Reactor

– Absorption

• Cladding, Structure, Coolant

• Control Rods

• Soluble Poisons

• Burnable Poisons

• Fission-Product Poisons 
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Neutron Balance (Reactor)

• Nuclear Reactor

– Absorption

• Modern reactor designs

– Moveable control rods (CR) to change power level and maintain 
steady state operation.

– Movable safety rods (SR) to quickly shut down reactor and ensure keff
< 1.

– Soluble boron in reactor coolant (PWR only) to “shim” keff (like trim 
control in an airplane).

– Fixed burnable poisons (boron or gadolinium) that deplete during 
operation.
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Radial Flux w/ Control Rods
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Axial Flux 
w/ 

Control 
Rods
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Neutron Balance (Reactor)

• Nuclear Reactor

– Leakage

• Core size and shape

• “Reflection” of neutrons back into the core

• Density of core material(s) 

– (temperature-dependent) 
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Neutron Balance (Reactor)

• Nuclear Reactor

– Leakage

• Primarily determined by reactor design

• Modern reactor designs:

– Use a cylindrical core shape to reduce surface-to-volume ratio 
while still allowing easy access to fuel

– Include a material (usually water) surrounding the core to 
reflect escaping neutron back into the active fuel region of the 
core
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Water-
Reflector Effect 

on Minimum 
Core Size

17



Stephen R. Tritch
Nuclear Engineering Program

Neutron Balance (Reactor)

• Nuclear Reactor

– Moderation

• Controls how effectively neutrons can slow down to 
thermal energies.

• Determined by selection of moderator material and 
pin dimensions (diameter and pitch) 
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Neutron Balance (Reactor)
• Nuclear Reactor

– Moderation

• In modern PWR designs

– Light water (H2O) is used as both moderator and coolant

– Pin diameter: ≈1 cm

– Pin pitch: ≈1.25 cm
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Neutron Balance (Fuel Facility)
• Fuel Facility

– Always Subcritical!

• Designed subcritical, no required adjustments

– Verify that current configuration is subcritical

– Confirm that proposed changes will be subcritical

• keff < 1 under all conditions

– Must account for:

» Uncertainties in Experimental Data and Calculations

» Normal, Anticipated Abnormal & Credible Accident 
Scenarios
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Criticality Control (Fuel Facility)

• Fuel Facility

– Production

• Determined by the total fissile content present in a single 
location.

• Must consider the mass, enrichment, and concentration 
(density) of fissile materials.

• Fuel handling sites have strict limits on these quantities to 
prevent accidents.
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Neutron Balance (Fuel Facility)

• Fuel Facility

– Absorption

• Non-Fissile Materials (Enrichment)

• Non-Fissionable Materials

• Solid Poisons

• Soluble Poisons 
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Neutron Balance (Fuel Facility)

• Fuel Facility

– Leakage

• Density

• Favorable Geometry

– High Leakage (Long Cylinder/Thin Slab)

– Individual Unit Subcritical

• Reflection

• Separation of Units
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Neutron Balance (Fuel Facility)

• Fuel Facility

– Moderation

• Affects

– Production

– Absorption

– Leakage

• Important factor in complex interactions between: 
spacing, absorption, and moderation among units
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Beyond 4 & 6 Factor Formulas

• The four factor formula gives us a good way to examine the 
competing bulk neutron balance effects in an infinite system.

• In finite systems, neutron leakage must be included when 
determining the overall neutron balance for the system.

• When designing critical systems (reactors) we need to know the 
spatial distribution of neutrons in the core, in addition to the 
multiplication factor.
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Beyond 4 & 6 Factor Formulas

• In a large reactor, different parts of the core may be behaving very differently

– Outer regions of the core will have a large amount of neutrons escaping from the core, 
and will be losing a large fraction of neutrons than are born within the region.

– Neutrons produced in inner regions of the core have little chance of escaping the core.  
These inner regions will effectively produce more neutrons than are needed locally for 
fission.

• For the reactor as a whole to be critical, these local regions must balance each 
other out.

– Different concentrations of neutron densities and reaction rates throughout the core.

– Neutrons “flow” from the center of the core towards the edge.
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Neutron Density

• During steady-state operations there is a natural spatial distribution of 
neutrons throughout the core.

• This natural distribution depends on the shape of the reactor and the 
locations of fissile fuel and neutron poisons in the core

– Peaked in center

– Low near edge of core

– Low density near neutron poisons

• In addition to the gross shape of the neutron density, there are local 
variations that can have a significant effect on the behavior of the core

– Localized peaking is usually limiting condition in core

27



Stephen R. Tritch
Nuclear Engineering Program

Neutron Densities by Geometry

• All Three Neutron Densities are “Cosine-Like”

• Peaked in the Center

• Zero at the Edges

Distance from Core Center (Radius)
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Radial Neutron Density
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Axial Flux 
w/ 

Control 
Rods
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AP600 Core Design

Fuel Assemblies

“Zoom In” on these

4 assemblies 

¼ Core Symmetry 31
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AP600 Assembly Design

Fuel Elements

Control Rods

¼ Assembly

Symmetry

Zoom In on

Quarter Assembly
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Simplified AP600 Assembly Model

• Simplified 2-D model 
of an AP600 quarter 
assembly.

• Contains UO2 fuel, 
boron control rods, 
and B4C burnable 
absorber rods.

• Reflecting boundary 
conditions on all sides.
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Neutron Density, Control Rods Out

• Notice the local 
variations in 
neutron density.

• Different 
elements can 
have different 
neutron 
densities.
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Neutron Density, Control Rods In

• Notice the local 
variations in 
neutron density.

• Different 
elements can 
have different 
neutron 
densities.
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Example of 
Energy Dependence
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This is Reactor Physics

• It turns out that the nuclear and thermal behavior of the core 
depends on the natural distribution of neutrons in the core.

• In order to perform any type of nuclear reactor analysis we must 
be able to determine what the neutron distribution looks like for 
any given core configuration.

• How to we calculate the natural distribution of neutrons in a 
reactor core?

– Not an easy task!

– Requires us to “think” like a neutron.
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