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Relevant Reading Assignments

e Sections 6.5 to 6.8 of “Introduction to Nuclear
Engineering” by Lamarsh and Baratta, 3™
Edition.

e Chapter 3 of “Nuclear Reactor Analysis” by
Duderstadt and Hamilton

e Page 100-120 of “Nuclear Engineering: Theory
and Technology of Commercial Nuclear Power”
by Knief, 2" Edition.
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Relevant Reading Assignments

e “Secrecy, simultaneous discovery, and the
theory of nuclear reactors” by Spencer
Weart. American Journal of Physics, Vol.
45(11). November 1977
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Learning Objectives

e Explain how the terms in the four and six
factor formulas may be adjusted to control
criticality in reactor and processing settings
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Criticality Control
10}
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* Fuel depletion
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Creating Neutron Balance

e States of criticality

keff = 1 Critical
keff > 1 Supercritical
keff < 1 Subcritical

e |n order to keep an operating nuclear reactor critical we will
need to “adjust” terms in the neutron balance

e Neutron balance controls

— Production
— Absorption

— Leakage
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Creating Neutron Balance

e Let us consider how we could adjust these parameters to achieve a target keff
for two different applications

e Nuclear Power Plant
— Target keff:

o keff =1 for steady-state operation

o keff > 1 for start-up, keff < 1 for shutdown

e Nuclear Fuel Processing Facility
— Target keff:

e keff <1 under all possible conditions (including accidents)
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Neutron Balance (Reactor)

e Reactor Criticality Requirements

— Operation Modes
e Power Reactors (Startup / Steady-State / Shutdown)
e Some Research Reactors (Pulse Mode)

e Allreactors have emergency shutdown (SCRAM) capability

— Routine adjustments to reactor criticality are required

Account for power fluctuations and feedback effects

—  Fuel depletion, density changes of moderator

Small frequent adjustments: control rods (in PWR)

Larger, planned, adjustments: soluble boron (in PWR)

e BWR reactors use control rods and coolant flow feedback to adjust criticality.
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Neutron Balance (Reactor)

e Nuclear Reactor
— Production
e Determined by the total fissile content of the core.
e |nitial fuel loading.
e Conversion of fertile nuclides (breeding).

e Refueling

— On-line or Shutdown
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Neutron Balance (Reactor)

e Nuclear Reactor
— Production

e For a modern commercial PWR core:

— Ceramic UO, pellets using Uranium that has been enriched to
3-5 wt % 23°U.

— 10-30% of power produced in a PWR is due to Plutonium bred
in the reactor

— Currently reactors operate 18-24 months between refuelings

10
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Neutron Balance (Reactor)

 Nuclear Reactor
— Absorption
e Cladding, Structure, Coolant
e Control Rods
e Soluble Poisons
e Burnable Poisons

e Fission-Product Poisons

11
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Neutron Balance (Reactor)

e Nuclear Reactor
— Absorption

e Modern reactor designs

— Moveable control rods (CR) to change power level and maintain
steady state operation.

— Movable safety rods (SR) to quickly shut down reactor and ensure k¢
<1.

— Soluble boron in reactor coolant (PWR only) to “shim” k. (like trim
control in an airplane).

— Fixed burnable poisons (boron or gadolinium) that deplete during
operation.

12
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Radial Flux w/ Control Rods
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Neutron Balance (Reactor)

e Nuclear Reactor
— Leakage
e Core size and shape
e “Reflection” of neutrons back into the core

e Density of core material(s)

— (temperature-dependent)

15
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Neutron Balance (Reactor)

* Nuclear Reactor
— Leakage
e Primarily determined by reactor design

e Modern reactor designs:

— Use a cylindrical core shape to reduce surface-to-volume ratio
while still allowing easy access to fuel

— Include a material (usually water) surrounding the core to
reflect escaping neutron back into the active fuel region of the
core

16
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Neutron Balance (Reactor)

e Nuclear Reactor
— Moderation

e Controls how effectively neutrons can slow down to
thermal energies.

e Determined by selection of moderator material and
pin dimensions (diameter and pitch)

18
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Neutron Balance (Reactor)
e Nuclear Reactor

— Moderation

e [n modern PWR designs
— Light water (H,0) is used as both moderator and coolant
— Pin diameter: =1 cm

— Pin pitch: =1.25cm

19
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Neutron Balance (Fuel Facility)
e Fuel Facility

— Always Subcritical!

e Designed subcritical, no required adjustments
— Verify that current configuration is subcritical

— Confirm that proposed changes will be subcritical

* k. < 1under all conditions
— Must account for:
» Uncertainties in Experimental Data and Calculations

» Normal, Anticipated Abnormal & Credible Accident
Scenarios

20
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Criticality Control (Fuel Facility)

e Fuel Facility
— Production

e Determined by the total fissile content present in a single
location.

e Must consider the mass, enrichment, and concentration
(density) of fissile materials.

e Fuel handling sites have strict limits on these quantities to
prevent accidents.

21
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Neutron Balance (Fuel Facility)

e Fuel Facility
— Absorption
e Non-Fissile Materials (Enrichment)
e Non-Fissionable Materials
e Solid Poisons

¢ Soluble Poisons

22
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Neutron Balance (Fuel Facility)

e Fuel Facility
— Leakage
e Density

e Favorable Geometry
— High Leakage (Long Cylinder/Thin Slab)

— Individual Unit Subcritical
e Reflection

e Separation of Units

23
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Neutron Balance (Fuel Facility)

e Fuel Facility
— Moderation

o Affects
— Production
— Absorption

— Leakage

e Important factor in complex interactions between:
spacing, absorption, and moderation among units

24
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Beyond 4 & 6 Factor Formulas

e The four factor formula gives us a good way to examine the
competing bulk neutron balance effects in an infinite system.

e [n finite systems, neutron leakage must be included when
determining the overall neutron balance for the system.

e When designing critical systems (reactors) we need to know the
spatial distribution of neutrons in the core, in addition to the
multiplication factor.

25
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Beyond 4 & 6 Factor Formulas

e In alarge reactor, different parts of the core may be behaving very differently

— Outer regions of the core will have a large amount of neutrons escaping from the core,
and will be losing a large fraction of neutrons than are born within the region.

— Neutrons produced in inner regions of the core have little chance of escaping the core.

These inner regions will effectively produce more neutrons than are needed locally for
fission.

e Forthe reactor as a whole to be critical, these local regions must balance each
other out.

— Different concentrations of neutron densities and reaction rates throughout the core.

— Neutrons “flow” from the center of the core towards the edge.

26



Stephen R. Tritch
Nuclear Engineering Program

(““ University of Pittsburgh

Neutron Density

e During steady-state operations there is a natural spatial distribution of
neutrons throughout the core.

e This natural distribution depends on the shape of the reactor and the
locations of fissile fuel and neutron poisons in the core

— Peaked in center
— Low near edge of core

— Low density near neutron poisons

e |n addition to the gross shape of the neutron density, there are local
variations that can have a significant effect on the behavior of the core

— Localized peaking is usually limiting condition in core

27
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Neutron Densities by Geometry
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o Peaked in the Center
. Zero at the Edges
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Radial Neutron Density
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“Zoom In” on these

AP600 Core Design 4 assemblies
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Simplified AP600 Assembly Model
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e Notice the local
variations in
neutron density.
elements can
have different
neutron
densities.
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Example of
Energy Dependence
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This is Reactor Physics

e |t turns out that the nuclear and thermal behavior of the core
depends on the natural distribution of neutrons in the core.

e In order to perform any type of nuclear reactor analysis we must
be able to determine what the neutron distribution looks like for
any given core configuration.

e |How to we calculate the natural distribution of neutrons in a
reactor core?

— Not an easy task!

— Requires us to “think” like a neutron.

37



