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Relevant Reading Assignments

• Sections 6.5 to 6.8 of “Introduction to Nuclear 
Engineering” by Lamarsh and Baratta, 3rd

Edition.

• Chapter 3 of “Nuclear Reactor Analysis” by 
Duderstadt and Hamilton

• Page 100-120 of “Nuclear Engineering: Theory 
and Technology of Commercial Nuclear Power” 
by Knief, 2nd Edition.
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Relevant Reading Assignments

• “Secrecy, simultaneous discovery, and the 
theory of nuclear reactors” by Spencer 
Weart. American Journal of Physics, Vol. 
45(11). November 1977
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Learning Objectives

• Differentiate among critical, supercritical, and subcritical conditions in a 
reactor

• Identify the terms in the four and six factor formulas

• Explain the principle of neutron moderation by light nuclei and the importance 
to thermal reactors  

• Understand the impact of heterogeneity on neutron balance

• Differentiate between the infinite (k∞) and effective (keff or k) multiplication 
factors
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Differentiate among critical, 
supercritical, and subcritical conditions 

in a reactor
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Neutron Economy

• Nuclear reactor core design focuses on the neutron economy 
within a reactor during its operating lifetime

• A successful reactor design must

– Produce enough excess neutrons to keep the chain reaction going

– Limit the number of excess neutrons so that the reaction does not 
become uncontrolled

– Consider thermal and material limits as well!

• Nuclear designers balance neutron sources (fuel) with neutron 
absorbers and leakage, the rate at which neutrons escape from 
the core.
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Rate of Increase Rate of Rate of Rate of

in Number Production Absorption Leakage

of Neutrons of Neutrons of Neutrons of Neutrons

       
       

= − −
       
              

Neutron Balance

Accumulation  = Production   − Absorption   − Leakage

If Accumulation:

= 0 Critical             Steady State          Static

> 0 Supercritical     Increasing             Kinetic/ Dynamic

< 0 Subcritical        Decreasing Kinetic/ Dynamic
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Neutron Life-Cycle
• Birth: Neutrons are born during fission events

• Lifetime: The lifetime of the neutron is the time between its birth and death. 
During this time the neutron potentially undergoes many scattering reactions 
off of host nuclei in the system

• Death: Neutron death occurs when the neutron leaks from the system or is 
absorbed by a host nuclei (potential triggering a fission reaction).
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Life-Cycle Definition of k

• Accumulation boiled down to single number by defining 
multiplication factor, k

• Measures how many (average) neutrons are produced by each 
neutron born

• Characterizes the chain-reaction

– Each neutron born must itself create at least 1 more neutron 
before being absorbed/leaking to sustain reaction

Number of neutrons in one generation

Number of neutrons in preceding generation
k =
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Criticality 

• Critical: Reactor is static. The number of neutrons from 
generation to generation does not change

• Subcritical: Number of neutrons from generation to generation 
decreases, the reaction eventually dies out

• Supercritical: Number of neutrons from generation to generation 
increases without bound

k<1 subcritical

k=1 critical    

k>1 supercritical
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Neutron Balance Definition of k

Rate of neutron production ( )

Rate of neutron loss ( )

P t
k

L t
= =

Rate of Increase Rate of Rate of Rate of

in Number Production Absorption Leakage

of Neutrons of Neutrons of Neutrons of Neutrons

       
       

= − −
       
              

Production rate - (Absorption+Leakage) rate ( ) ( )
dN

P t L t
dt

= = −
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Simple Chain-Reaction Kinetics

( ) ( )
dN

P t L t
dt

= −

Rewrite balance in terms of k and l

( )

( )

N t
l

L t
=

Change in neutron count = production rate – loss rate

Neutron lifetime, N(t) is total neutron population at time t

( )
( ) ( ) 1 ( ) ( 1) ( )

( )

dN P t
P t L t L t k L t

dt L t

 
= − = − = − 

 

( 1)
( )

dN k
N t

dt l

−
=
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Simple Chain-Reaction Kinetics

• Solve simple 
differential equation 
to find

• k is important in 
determining time-
behavior of a reactor

0

( 1)
( ) exp

k
N t N t

l

− 
=  

 
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Determining k

• Finding k is crucial in reactor design

• Today the determination of k is done using 
mathematical theories and computer hardware not 
available to the first reactor designers

• Original theories primarily based on physical 
intuition and written in terms of experimentally 
measurable quantities

• These theories distinguish between infinite (easier to 
quantify) and finite systems (practical)
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Infinite System

• Characteristics

– No Outer Boundary   No Neutron Leakage

– Abstraction to Simplify Calculations
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Nuclear Reactions

Production = Fission Rate (ΣfΦ)

× Neutrons produced

per fission (ν)

Destruction Rate = Absorption Rate (ΣaΦ)
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Infinite System

• Neutron Balance

– Production Rate  Absorption Rate

– (Infinite) Multiplication Factor

• What about the neutron energy dependence?

Production Rate

Absorption Rate

f

a

k





= =



f  a 
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Infinite System

• Production Rate  Absorption Rate

– Neutron flux and material cross sections are highly dependent on 
neutron energies

• Neutron energy affects probability of being absorbed (cross section)

• Probability of absorption affects density of neutrons with that particular 
energy (flux)

– Creates a complex problem to solve

• Highly-dependent on how neutrons lose energy (slow down) through 
scattering in a material.
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235U

238U

Fission

238U

Absorption

Cross Section
(Energy 
Dependence)
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Neutron Fluxes
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One-Energy Group Averaged Model
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Infinite System

• Neutron Balance

– Production Rate  Absorption Rate

– (Infinite) Multiplication Factor

– Simplified model using one energy group

– Everything has been effectively energy averaged

Production Rate

Absorption Rate

f

a

k





= =



f  a 
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Infinite System

• For fissile isotopes (U235, Pu239, etc) fission is most efficiently 
caused by thermal neutrons (energy < 1 eV)

• However, neutrons produced by fission are born with high 
energy (energy > 2 MeV)

• In order for the chain reaction to continue these high-energy 
fission neutrons must be slowed down to thermal energies (7 
orders of magnitude)

– Neutrons can lose energy through elastic collisions with target 
atoms in the material.

– We also want to minimize the number of neutrons that are 
absorbed before they reach thermal energies and can cause fission 
events.
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235U

238U

Fission

238U

Absorption

Cross Section
(Energy 
Dependence)
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Neutron Scattering
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Explain the principle of neutron 
moderation by light nuclei and the 

importance to thermal reactors
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Neutron Moderation

• The process of slowing fast fission neutrons 
down to thermal energies is called 
moderation. 

• Elastic Scattering Kinetics
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Neutron Moderator Materials

• Low Z atoms are more effective moderators than high Z atoms

• Most modern reactors use H, D, or C as moderators

 

Neutron Moderation Properties of Selected Atoms and Molecules 

Moderator Target Atomic Mass   (A) Scattering Ratio (α) (1- α) Collisions to Thermal† 

H 1 0.000 1.000 18 
H2O    20 

D 2 0.111 0.889 25 
D2O    35 
Be 9 0.640 0.360 86 
C 12 0.716 0.284 114 
O 16 0.779 0.221 150 

Na 23 0.840 0.160 218 
U 238 0.983 0.017 2148 

†
Average number of collisions to moderate a fast (1 MeV) neutron to a thermal equilibrium energy of 0.025 eV. 
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Moderator Materials

• Hydrogen

– Highest average energy loss per collision of any target atom.

– No “backscattering,” several collisions are required to reflect 
a neutron’s direction 180°.

– Small, but noticeable, absorption cross section

• Deuterium

– Almost as effective as hydrogen-1 at moderation.

– Smaller absorption cross section than H11.
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Moderator Materials

• Increasingly High-Z Materials

– Lower Average Energy Loss →
Decreasingly Effective Moderation

– Backscatter → Increasingly Effective Reflection
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Moderator Materials

• Water

– Efficient / Small Reactor Core

– Absorption

• Deuterium / Beryllium / Graphite

– Increasingly Larger Cores

• Sodium

– Moderation / Absorption / T-H Trade-Offs

• Heavy Metals

– Fast Reactor Designs
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Infinite Systems

• Consider the life cycle of a single fission neutron, and the different 
paths it can take:

• Born at high energy (fast > 1MeV)

– Some fast neutrons are absorbed and cause fission

• Interacts with moderator to slow down

– Some are absorbed by moderator

• Once the neutron reaches thermal energy it is absorbed

– Only some of the thermal neutrons are absorbed in the fuel.

– Only some of the thermal neutrons absorbed in the fuel cause fission 
events
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Identify the terms in the four and six 
factor formulas
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Infinite Systems

• Four-Factor Formula for k-infinity

k = e p h f
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Infinite Systems

• Four-Factor Formula

k = e p h f
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Four Factor Formula

• Probabilistic Model

– Considers Thermal-Neutron Fission From Fast 
(Fission Spectrum) Neutrons

• e  Fast Fission Fractional Augmentation ( e > 1 )

• p  Fraction of Neutrons Reaching Thermal (Not Absorbed 
Fast or [Primarily] in Resonances)

• f  Fraction Absorbed in Fuel ( U + Pu )

• h  Neutrons Produced per Thermal Neutron Absorbed in 
Fuel
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238U Absorption Cross Section
Importance of Resonance Escape

“Jump” Resonances
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k

Moderator-to-Fuel Ratio Effect on k
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Understand the impact of 
heterogeneity on neutron balance
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Heterogeneous Systems

• Heterogeneous Systems

– Lumping Fuel

• Increases Resonance Escape Probability  p

• Decrease Thermal Utilization Factor  f

– Optimization

 p >   f

– Natural Uranium / Graphite Critical

– LWR Fuel Pin Lattices
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Effect of
Heterogeneity 

of Fuel & 
Moderator

Slowing Down in Moderator

Fission in 

Fuel

Fission in 

Fuel

Fuel Rods Moderator Channels
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Four-Factor Formula

• Fuel “Lumping” / Lattice Arrangement

– Increase Fast Fission Factor e

– Increase Resonance Escape Probability p

– Decrease Thermal Utilization f

– Pin Diameter and Spacing to optimize p×f

• Similar to previous k vs. M-to-F curve

– Example:  LWR-like lattice
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More

Reactive
More

Reactive

LWR-Like Fuel Pin Lattice (4.3 wt% 235U)

X-Axis Nominal (Increasing Moderator-to-Fuel Ratio)

“Tight Spacing” “Wide Spacing”Pitch (cm)

Over-ModeratedUnder-Moderated

“Optimum” Moderation

Moderation Effects
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Differentiate between the infinite (k∞) 
and effective (keff or k) multiplication 

factors
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Finite System

• Neutron Balance

Production  Absorption + Leakage

 f   a  + Leakage

Note:  k > keff (To accommodate leakage)

LeakageAbsorption

Production

+
== kkeff
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Six Factor Formula

• Six-Factor Formula

keff = k Pfnl Ptnl

keff = e p h f Pfnl Ptnl

Pfnl = Fast Non-Leakage Probability

Ptnl = Thermal Non-Leakage Probability

keff = e p h f Pnl

Pnl = Total Non-Leakage Probability
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Leakage depends on shape & size (surface-to-volume ratio)

Few Neutrons Leak from 

Volume as Sphere

More Neutrons Leak 

from Volume as Slab

Neutron Leakage Effect

49


