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Problem 1

System Description

A two-loop reactor system with:

* Reactor (lumped hot leg) at temperature 7},

Steam Generator 1 with cold leg at 7,41

Steam Generator 2 with cold leg at T,

Equal mass flow rates and water masses in each loop
Reactor Water Mass Fraction (RWMF): u

Given parameters:

* Base heat capacity: Cy = 33.33 %-sec/F
e Base time constant: 75 = 0.75 x Cy = 25.00 sec
e Initial temperature: T,y = Too1a1 = Teora2 =450 F

Derived parameter:
The flow heat capacity rate per loop is not directly given in the problem statement but can be
derived from the relationship between time constants and heat capacities:

W Cy 3333
21y 2x25.00

This represents the (mass flow rate x specific heat) for each loop.
System parameters as functions of (:

= 0.6667 %-sec/F

* Reactor time constant: T, = UTy
* Reactor heat capacity: C, = uCy

e Steam generator time constant (each): 7y, = (1_51 o
 Steam generator heat capacity (each): Csg = (1_5 o
Part A
Python Code

import numpy as np
import sympy as sm

# Given parameters

C_0 = 33.33 # Base heat capacity [/-sec/degF]

tau_0 = 25.00 # Base time constant [sec]

W= 2C_0 / (2 * tau_0) # Flow heat capacity rate per loop

def calculate_system_parameters (mu):
C_.r = mu * C_O0O # Reactor heat capacity
C_.sg = (1 - mu) * C_.O0 / 2 # Steam generator heat capacity (each
)

return C_r, C_sg




# Matrix form: dT/dt = A*T + B
def get_matrix_A(C_r, C_sg, W):

A = np.array ([
[-2xW/C_r, W/C_r,
(W/C_sg, -W/C_sg,
[W/C_sg, 0,

1

return A

# Vector B (forcing terms):

w/C_r],
01,
-W/C_sg]

# B = [P_r/C_r, -Qdotl/C_sg, -Qdot2/C_sgl"T

Solution

The energy balance for each component yields differential equations:

Reactor energy balance:

d Thot

C
" dt

Steam Generator 1 energy balance:

dT 011

Csg dt

Steam Generator 2 energy balance:

dT o102

Csg dt

where:

=P —W(Thot — Teotar) — W (Thor — Teo1a2)

W (Thor — Teora1) — Q1

W (Thor — Teotan) — 02

* P, =reactor power (positive for heat generation)

e 01,0, = steam generator heat removal rates (positive for heat removal)

e W= zc_% =0.6667 %-sec/F = flow heat capacity rate per loop

Matrix Form:

Thol
Define the temperature vector: T = | T;;41
Teotaz
The system can be written as:
dT
— =AT+B
d
where the coefficient matrix A is:
_w W w
¢ G [oh
—_ |y _w
Ml e L
P




=T T - ¥ N O N

and the forcing vector B is:

Numerical example for yu = 0.5:
With = 0.5: C, = 16.66 %-sec/F, Csq = 8.33 %-sec/F, W = 0.6667 %-sec/F

—0.0800 0.0400  0.0400
A= | 0.0800 —0.0800 0

0.0800 0 —0.0800
Part B
Python Code
# At steady state, dT/dt = O

# From SG1: O = Wx(T_hot - T_coldl) - Qdotl
DeltaTl = Qdotl / W

# From SG2: 0 = Wx(T_hot
DeltaT2 = Qdot2 / W

T_cold2) - Qdot2

# From reactor: P_r = WxDeltaTl + WxDeltaT2
power_balance = Qdotl + Qdot2

Solution

At steady state, all time derivatives are zero (‘% =0).
From Steam Generator 1 equation:

0 =W (Thor — Teota1) — Q1

0O
ATI - Thot - Tcoldl = W

From Steam Generator 2 equation:

0 =W (Thor — Teota2) — Q2

0,
ATy = Thor — Teotar = W

From Reactor equation:
0=P.— WAT; — WAT,

P =WAT, +WAT, = 01+ 0>



This confirms the power balance: reactor power equals total steam generator heat removal
rates.

Part C
Python Code

# Average reactor temperature (mass-weighted)

def calculate_T_ave(T_hot, T_coldl, T_cold2, mu, C_0):
C_r = mu * C_O
C_sg = (1 - mu) x C_O0 / 2

# Mass-weighted average
T_ave = (C_r*T_hot + C_sg*T_coldl + C_sg*T_cold2) / C_O

# Simplified form
T_ave_simplified = mu*T_hot + (1-mu)*(T_coldl + T_cold2)/2

return T_ave_simplified

# For mu = 0.5:
T_ave_50 = 0.5*%T_hot + 0.25%xT_coldl + 0.25*xT_cold2

# For mu = 0.75:
T_ave_75 = 0.75*xT_hot + 0.125*T_coldl + 0.125*T_cold?2

Solution

The average reactor temperature must be calculated as a mass-weighted average:

_ CrThor + CsgTeorar + CsgTeoian
C,+2Cs,

Tave

Since C; +2Cs = uCo+2- % = (Cy, this simplifies to:

_ CrThol + ngTcold 1+ ngTcole

T
ave CO

Substituting C, = uCp and Cyg = (1751)(:0:

(1—p)

Tave = ,UThot + T (Tcoldl + Tcole)

Important: This formula depends on !

For u =0.5:
T Thot | Teotar +Teoan
ave 2 4
For 1 =0.75:
T — 3Thor n Teorar + Teola2

4 8
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Note: When the system is balanced (P, = Q1 + Q,), the mass-weighted average temperature
remains constant even during transients, since d(COa;—IT“W) =P —01—0,=0.

Part D
Python Code

from scipy.integrate import odeint

def reactor_odes(y, t, W, C_r, C_sg, P_r, Qdotl, Qdot2):
P_r: Reactor power (heat generation rate)
Qdotl, Qdot2: SG heat removal rates

mnn

T_hot, T_coldl, T_cold2 =y

dT_hot_dt = (P_r - Wx(T_hot - T_coldl) - Wx(T_hot - T_cold2)) /
C_r

dT_coldl_dt

dT_cold2_dt

(Wx(T_hot - T_coldl) - Qdotl) / C_sg
(Wx(T_hot - T_cold2) - Qdot2) / C_sg

return [dT_hot_dt, dT_coldl_dt, dT_cold2_dt]

# Initial conditions at equilibrium
yO = [450, 450, 450]

# Time array: O to 30 seconds
t = np.linspace(0, 30, 500)

# Solve for different cases
solution = odeint(reactor_odes, yO, t, args=(W, C_r, C_sg, P_r,
Qdotl, Qdot2))

T_hot = solution[:, O]
T_coldl = solutionl[:, 1]
T_cold2 = solutionl[:, 2]

# Calculate average temperature (mass-weighted, depends on mu)
T_ave = mu*T_hot + (1-mu)*(T_coldl + T_cold2)/2

Solution

Transient simulations were performed for four cases using numerical integration (scipy.integrate.odeint):

Cases simulated:

1. u =0.5, equally loaded (Q = 50%, Q> = 50%)

2. u =0.75, equally loaded (Q1 = 50%, Q> = 50%)

3. u =0.5, unequally loaded (Q1 = 60%, Q> = 40%)
4. u=0.75, unequally loaded (01 = 60%, Or = 40%)




All cases assume reactor power P = 100% and initial conditions at equilibrium (7, = T;.p141 =
T.01a0 = 450 F).

Note: Power percentages refer to fraction of total reactor power, not individual SG ratings.
Equally Loaded Cases:

Equally Loaded Steam Generators (Q1=50%, Q2=50%)
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Unequally Loaded Cases:



Unequally Loaded Steam Generators (Q1=60%, Q2=40%)
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Cross-Section Data

Two-group cross-section data stored in Python dictionary:

import numpy as np

cross_sections = {
>fast’: {
’D’: 1.4,
’Sigma_a’: 0.010,
’Sigma_s’: 0.050,
thermal [cm™-1]
’nu_Sigma_£f’: 0.000,
’chi’: 1,
’v?: 1.8e7,
sec]
},
>thermal’: {
’D’: 0.35,
’Sigma_a’: 0.080,
’Sigma_s’: 0.0,

fast [cm™-1]

’nu_Sigma_f’: 0.125,

+*

+H+

+*

Diffusion constant [cm]
Absorption [cm~™-1]

Scattering from fast to

[cm™-1]
Fission spectrum

nu*Sigma_*f

Average group velocity [cm/

Diffusion constant
Absorption [cm~™-1]
Scattering from thermal to

[cm]

nu*Sigma_f [cm™-1]
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’chi’: O, # Fission spectrum
‘v’ 2.2eb, # Average group velocity [cm/
sec]

# Extract variables for easy access

D_fast = cross_sections[’fast’][’D’]

D_thermal = cross_sections[’thermal’][’D’]

Sigma_a_fast = cross_sections[’fast’][’Sigma_a’]
Sigma_a_thermal = cross_sections[’thermal’][’Sigma_a’]
Sigma_s_fast = cross_sections[’fast’][’Sigma_s’]
nu_Sigma_f_fast = cross_sections[’fast’][’nu_Sigma_f’]
nu_Sigma_f_thermal = cross_sections[’thermal’][’nu_Sigma_f£f’]

Part A
Python Code

# Four-Factor Formula: k_inf = epsilon * p * f * eta

# Fast fission factor: epsilon = 1 (no fast fissions)
epsilon = 1.0

# Resonance escape probability
p = Sigma_s_fast / (Sigma_a_fast + Sigma_s_fast)

# Thermal utilization factor: f = 1 (single-region)
£f=1.0

# Reproduction factor
eta = nu_Sigma_f_thermal / Sigma_a_thermal

# Four-Factor Formula
k_inf = epsilon * p * f * eta

print (f"k_inf = epsilon * p *x f * eta = {k_inf:.4f}")

Solution

The infinite multiplication factor is calculated using the Four-Factor Formula:
ko =€-p-f-M
where:

¢ = fast fission factor (neutrons from fast fissions per thermal fission)
* p =resonance escape probability (fraction of fast neutrons reaching thermal energies)
* f =thermal utilization factor (fraction of thermal neutrons absorbed in fuel)




e ® N o w»n kA

* 1M = reproduction factor (neutrons produced per thermal neutron absorbed in fuel)
Given cross-sections:

Vs fas = 0.000 cm™! (no fast fissions)

* sz,thermal =0.125 Cl'l'li1

Y fast = 0.010 cm~!

* Z'a,thermal =0.080 Cm_l

* X fast = 0.050 cm™! (scattering from fast to thermal)

Calculating each factor:
1. Fast fission factor:

€ =1.0000 (no fast fissions since VX 45 = 0)

2. Resonance escape probability:

s fast 0.050  0.050

- = — 0.8333
ufast+Zs fast 0.0104+0.050  0.060

p g
3. Thermal utilization factor:

f=1.0000 (single-region, homogeneous medium)

4. Reproduction factor:

_ sz,thermal _ 0.125
Z'a,thermal 0.080

=1.5625

Final calculation:

kew=¢€-p-f-1n=1.0000 x0.8333 x 1.0000 x 1.5625 = 1.3021

Part B
Python Code

# Calculate diffusion lengths

# L~2_fast = D_fast / Sigma_total_fast

# where Sigma_total_fast = Sigma_a_fast + Sigma_s_fast (removal from
fast group)

Sigma_total_fast = Sigma_a_fast + Sigma_s_fast

L_squared_fast = D_fast / Sigma_total_fast

# L"2_th = D_th / Sigma_a_th
L_squared_th = D_thermal / Sigma_a_thermal




L_fast = np.sqrt(L_squared_fast)
L_thermal = np.sqrt(L_squared_th)

print (f"L_fast = {L_fast:.3f} cm")
print (f"L_thermal = {L_thermal:.3f} cm")

Solution

The diffusion lengths for each group are calculated as:

L% = b

Zremoval

Fast Group:
The removal cross-section includes both absorption and scattering out:

% removal. fast = Zafast + s, fast = 0.010+0.050 = 0.060 cm ™!

Dfas[ 14

= =23.333 cm?
removal, fast 0.060

2
Lfast = y

Lfgy = Vv23.333 =4.830 cm

Thermal Group:
For the thermal group (lowest energy group), only absorption removes neutrons:

L2 o Dihermat o 0.35

mal = = = 4.375 cm?
thermal Za.,thermal 0.080

Lthermal =V 4375 = 2.092 cm

Ligy =4.830cm,  Lijpermar = 2.092 cm

Part C

Solution

For a rectangular solid geometry (box) with dimensions L,, Ly, and L,, where the neutron flux goes

to zero at the edges (bare reactor boundary condition), the geometric buckling is:

P () (2) ()

This expression comes from solving the neutron diffusion equation with boundary conditions

¢ = 0 at the reactor boundaries. The solution for the fundamental mode has the form:

10



The geometric buckling is the eigenvalue associated with this spatial mode, representing the
curvature of the neutron flux distribution. Each term corresponds to the buckling in one spatial
dimension:

2
« B2 = (ﬁ) - buckling in x-direction

2
- B = (r’i) - buckling in y-direction

2
« B2= <L£z> - buckling in z-direction

The total geometric buckling is the sum of the directional components.
Note: The derivation of this formula from the diffusion equation was completed in Exam 1.
The proof is left to that work.

Part D
Python Code

import sympy as sm

# Given dimensions
L_x_val = 150 # cm (width)
200 # cm (length)

L_y_val

# Define L_z (height) as unknown
L_z_sym = sm.Symbol(’L_z’, positive=True)

# Buckling with unknown height
B_sq = (sm.pi / L_x_val)#**2 + (sm.pi / L_y_val)#**2 + (sm.pi /
L_z_sym) **2

# Criticality equation: k_inf = (L"2_fast * B2 + 1) (L"2_thermal * B
"2+ 1)

criticality_eq = (L_squared_fast * B_sq + 1) * (L_squared_th * B_sq
+ 1) - k_inf

# Solve for L_z

L_z_solutions = sm.solve(criticality_eq, L_z_sym)

L_z_critical = float([sol for sol in L_z_solutions if sol.is_real
and sol > 0][0])

print (f"Critical height L_z = {L_z_critical:.2f} cm")

Solution

For a trough with width L, = 150 ¢cm and length L, = 200 cm, we need to find the critical height
L, where k.rr = 1.
Criticality condition using two-group theory:

11




At criticality, the effective multiplication factor equals unity:

koo
Koy = —1
N, BN, B+ 1)

‘fast thermal

Rearranging:
2 2 2 2
(LfastB + 1)<LzhermalB + 1) = koo

The geometric buckling for the rectangular trough is:

Known values:

e koo = 1.3021

* L7, =23.333 cm?
e L2 . =4375cm?
e L,=150cm

e L,=200cm
Calculation:

Substituting the buckling expression:
N EA R AL i
~\150 200 L,
2

B2 —4.386 % 104 +2.467 x 1074 + %

<
Substituting into the criticality equation:

2 2
(23.333 (6.853 x 1074 + %) + 1) <4.375 (6.853 x 10~* 4 %) + 1) = 1.3021

Z <

Solving this equation numerically (or symbolically with SymPy) yields:

’LZ =31.72 cm‘

Verification:

e B2=10.010496 cm 2
¢ kepr = 1.000000 v

The trough would become critical at a height of approximately 31.7 cm.
Part E
Python Code

12



# Prompt criticality
BETA = 640e-5 # Delayed neutron fraction

# Prompt critical k_eff = 1/(l-beta)
k_eff_prompt = 1 / (1 - BETA)

# Solve for height at prompt criticality

L_z_prompt_sym = sm.Symbol(’L_z_prompt’, positive=True)

B_sq_prompt = (sm.pi / L_x_val)#**2 + (sm.pi / L_y_val)#**2 + (sm.pi /
L_z_prompt_sym) **2

prompt_crit_eq = (L_squared_fast * B_sq_prompt + 1) * \
(L_squared_th * B_sq_prompt + 1) - k_inf /
k_eff_prompt

L_z_prompt_solutions = sm.solve(prompt_crit_eq, L_z_prompt_sym)
L_z_prompt = float([sol for sol in L_z_prompt_solutions

if sol.is_real and sol > 0][0])

print (f"Prompt critical height L_z = {L_z_prompt:.2f} cm")

Solution

Prompt criticality occurs when the reactor can sustain a chain reaction on prompt neutrons alone,
without relying on delayed neutrons. This happens when:

kepr = ﬁ
where f3 is the delayed neutron fraction.
Given:
* B =640 x 107> = 0.00640
Prompt critical condition:
1 1

=1.00644

Kes.promet = 77000640 — 0.99360

Using the same two-group criticality equation from Part D, but now solving for the height
where k. ¢y = 1.00644:

koo
B2 +1)(17

thermal

= 1.00644

(L}

‘fast B2+1)

Rearranging:

koo 1.3021

= =1.2938
ket prompr  1.00644

2 2 2 2
(LfastB + 1)(LlhermalB + 1) =

13




2
With B = (%)2 + (%)2 + (Ll) , solving numerically:

Z

L prompr = 32.18 cm

Comparison:

* Delayed critical height: L, =31.72 cm
* Prompt critical height: L; y.pmp; = 32.18 cm
* Difference: AL, = 0.46 cm

The liquid must rise an additional 0.46 cm above delayed criticality to reach prompt criticality.
This small difference highlights why delayed neutrons are crucial for reactor control.

Part F

Solution

The presence of people near the trough could significantly impact the critical height.
Physical mechanism:

If the neutron flux is not actually zero at the trough edges (as assumed in our bare reactor
model), people standing nearby would:

1. Act as neutron reflectors: Human bodies contain significant amounts of water (~60% by
mass), which is an excellent neutron moderator and reflector

2. Reduce neutron leakage: Neutrons that would have escaped the trough can be scattered
back by the hydrogen in the water content of human tissue

3. Increase system reactivity: Reduced leakage means more neutrons remain in the system to
cause fissions

Impact on critical height:

Critical height would DECREASE

Problem 3

Part A
Python Code

import numpy as np

# Problem 3A

## Using formulas from Fundamental Kinetics Ideas R17 Page 51
DRW = 10 # pcm/step

STEPS = 8

LAMBDA_EFF = 0.1 # hz

# ASSUMING AFTER ROD PULL COMPLETE, RHO_DOT = O

RHO_DOT = O
BETA = 640 # pcm

14
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# FIND RHO AFTER ROD PULL
rho = DRW * STEPS # pcm

sur = 26.06 * (RHO_DOT + LAMBDA_EFF * rho) / (BETA - rho)

print (f"The Start Up Rate is: {sur:.3f}")

Solution

Given:

* Differential Rod Worth (DRW) = 10 pcm/step
* Number of steps = 8

® eﬁfZOJﬂHZ
* p =0 (after rod pull complete)
* B =640 pcm

Reactivity after rod pull:
p = DRW x STEPS = 10 x 8 = 80 pcm

Start-up rate calculation:

26.06 x (p+Aefr X p)  26.06 x (0+0.1 x 80)

SUR =
B—p 640 — 80

| Start Up Rate = 0.373 DPM |

Part B

Negative reactivity feedback due to temperature would cause this power level off. I would expect
that the average reactor temperature would have increased from the low power state significantly. I
would also expect xenon concentration would have increased, but would not have been the culprit
in power leveling off.

Part C
Python Code

# Problem 3C
import sympy as sm

D_POWER 2.5 # 7

D_T_AVG = 4 # degrees

HEAT_UP_RATE = 0.15 # F/s

ALPHA_F = -10 # pcm/%power (negative feedback)

rho_rod = rho

15
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# The heat up rate introduces a rho_dot, so SUR becomes O at the
peak power.

alpha_w_sym = sm.Symbol("alpha_w")

rho_dot = alpha_w_sym * HEAT_UP_RATE

rho_net = alpha_w_sym * D_T_AVG + rho_rod + ALPHA_F * D_POWER

# At peak power, SUR = 0O, which means: rho_dot + lambda_eff =x*
rho_net = 0

# (the numerator must be zero)

equation = rho_dot + LAMBDA_EFF * rho_net

# Solve for alpha_w
alpha_w_solution = sm.solve(equation, alpha_w_sym) [0]
alpha_w = float(alpha_w_solution)

print (f"The water temperature reactivity coefficient is: {alpha_w:.3
f} pcm/F")

Solution

Given:

* Power change at peak: AP =2.5%

* Average temperature change at peak: AT, = 4°F

* Heat-up rate: 7 =0.15 °F/s

* Fuel temperature coefficient: oy = -10 pcm/%power (negative feedback)
* Rod reactivity: p,,q = 80 pcm (from Part A)

* Aesr=0.1Hz

At peak power, the start-up rate becomes zero (SUR = 0), but temperature is still rising. This
is the key insight: the numerator of the SUR equation must equal zero:

p"F&iprMtzo

The temperature rise creates a reactivity change rate:
p=0xT=a,x0.15
The net reactivity at the peak is:
Pret = CwATyyg + Prog + 0 AP = 04, x 44804 (—10) x 2.5
Substituting into the SUR = 0 condition:

0, X 0.1540.1 x (o, x4480—25) =0

0.15¢4, +0.40,+5.5=0

16




0.5504, = =5.5

o, = —10.000 pcm/°F

Part D
Solution

At final equilibrium when the transient is complete:

e Temperature stops changing: T =0=p =0
* Start-up rate returns to zero: SUR =0
* Net reactivity must be zero: p,e =0

Since p = 0 at equilibrium, the SUR equation requires:

26.06 x (0—|— leff X pnet)
B — Prer

This is satisfied when p,,; = O:

(wafinal + Prod T afPfinal =0

However, without knowing the heat removal characteristics (i.e., the relationship between
power generation and temperature at thermal equilibrium with ambient losses), we cannot solve
for exact values of Tfinq and Pripg.

Qualitative Analysis:

The transient behavior proceeds as follows:

1. At the peak (AT = 4°F, AP = 2.5%): SUR = 0, but temperature is still rising at 0.15 °F/s

2. After the peak: Temperature continues to rise = more negative reactivity is added = power
decreases from its maximum

3. At final equilibrium: Temperature plateaus when heat generation equals ambient heat re-
moval

Therefore:

Tfinal >4°F and Pfinal <2.5%

The final power is lower than the peak power, but the final temperature is higher than the peak
temperature. The peak power at 2.5% is a transient maximum, not the steady-state equilibrium
value.

Problem 4

Problem Statement

A pressurized water reactor (with highly enriched fuel) is initially at a steady state of 25% steam
load. The operators are directed to raise power (picking up electrical load) by increasing steam
flow to 50% in a single motion.

Initial conditions:

17



T, =500 F

T, =510 F (hot leg)

T. =490 F (cold leg)

Power = 25%

* No automatic control forcing changes in average temperature

Part A
Solution

Chronological list of physical impacts on the primary system and reactor:
Secondary Side (Given):

Turbine throttle opened (operators pick up electrical load)
Steam flow increases from 25% to 50%

Pressure in steam generator drops

Aggressive boiling in steam generator begins

SG water cools (maintains saturation conditions)

Primary side cold leg (7;) cooled by steam generator

S

Primary Side and Reactor:

~

Cold leg temperature (7;.) decreases
. Average temperature (7,,.) decreases (no automatic control)
9. Moderator temperature reactivity feedback (,,,; < 0):

[¢]

* Cooler moderator — increased water density

* Better neutron moderation and thermalization
* Positive reactivity insertion: p = 0,0 X ATy e
* Since 0,q < 0 and ATy <0, thenp >0

10. Reactor power begins to increase

11. Fuel temperature increases — negative fuel feedback (Doppler effect)
12. Hot leg temperature (7}) increases

13. Core AT increases: AT = 1;107‘”5;

14. Average temperature begins to rise back toward initial value

15. Power levels off at 50% when:

* Heat removal rate matches heat generation rate

* AT establishes new equilibrium: AT}, = AT,14 X %
* T, returns to approximately initial value

» Net reactivity returns to zero (reactor critical)

Impacts on six factors in k.rr = € X p X f XN X Ppyg X Pryp:

1. & (fast fission factor): Negligible change

* Minimal U-238 present for fast fission
* No significant change

2. p (resonance escape probability): Slight increase
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Limited U-238 resonance absorption with high enrichment
* Cooler moderator — higher density — more scattering

* Faster neutron slowing down through resonance region

* Less time spent at resonance energies — less absorption

* p increases slightly

3. f (thermal utilization factor): Possible slight increase

Z"a fuel
° Y
‘f Za‘ Sfuel +Ea$mod . . .
* Cooler moderator — better thermalization efficiency
* More neutrons successfully reach thermal energies where fuel cross section dominates
* Competing effect: higher moderator density increases X ;o4

* Net effect: likely small increase
4. mn (reproduction factor): Minimal change

N =vel for U-235
* Temperature effects on U-235 cross sections are small
* Essentially constant

5. PrpyL (fast non-leakage): Minimal change

* Large reactor — already high fast non-leakage
* Small temperature changes don’t significantly affect

6. Pryr (thermal non-leakage): Slight increase

* Cooler moderator — higher density — shorter diffusion length

* Reduced thermal neutron leakage

* However, large reactor already has high Pry; (low leakage baseline)
 Effect is present but modest in absolute terms

Overall mechanism: Net positive reactivity from moderator cooling results from the combined
contributions of increased p (faster slowing through resonances), increased f (better thermaliza-
tion), and increased Pryy (reduced leakage). For a large reactor with high enrichment, multiple
effects contribute to the reactivity rather than a single dominant mechanism. The cooler, denser
moderator improves neutron economy across several factors, causing power to increase until new
equilibrium at 50%.

Part B

Python Code

# Initial conditions
T_ave_initial = 500 # F
T_h_initial = 510 # F
T_c_initial = 490 #t F
P_initial = 25 # %
P_final = 50 # %

# Calculate DeltaT
DeltaT_initial = T_h_initial - T_c_initial # 20 F
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DeltaT_final = DeltaT_initial * (P_final / P_initial) # 40 F

# Estimate final temperatures (assume T_ave approximately constant)
T_ave_final = T_ave_initial

T_h_final = T_ave_final + DeltaT_final / 2

T_c_final = T_ave_final - DeltaT_final / 2

Solution

At steady state, reactor power is proportional to the temperature rise across the core:
Pocmxcpx AT

For constant flow rate (no pump speed change):

Pnew — ATnew
Poa  ATyq

Initial state (25% power):
* ATyitiat =T, — T, =510—490 =20 F
Final state (50% power):
AT final = ATijsial X y =20 x % =
initial
Assuming strong moderator feedback returns 7, to approximately its initial value:

Tave,final ~ 500 F

AT
Th,final = Tave + 7 =5004+20=|520F

AT
¢ final = Tave — > =500—-20=1|480F

Comparison table:

Parameter Initial 25%) Final (50%) Change

Power 25% 50% +25%
T, (F) 510 520 +10F
T. (F) 490 480 —10F
T, (F) 500 ~500 ~0F
AT (F) 20 40 +20F
Part C
Solution

For a reactor with low enrichment fuel (3-5% U-235), the final condition will be significantly
different due to the large quantity of U-238 present. Low enrichment fuel contains approximately

20




95% U-238, compared to only about 7% in the highly enriched case.

As power increases and fuel temperature rises, Doppler broadening of U-238 resonances cre-
ates a strong negative fuel temperature coefficient. This negative fuel feedback counteracts the
positive moderator temperature feedback from the cooler water. The net reactivity insertion be-
comes much smaller than in the high enrichment case, and the power increase may be insufficient
to reach 50%.

To restore proper operation, operators must withdraw control rods to add positive reactivity and
overcome the strong negative Doppler feedback. This allows the reactor to reach the desired 50%
power level matching the steam demand.

Problem 5
Part A

Solution

The xenon-135 transient for the given power history is solved using the coupled differential equa-
tions for I-135 and Xe-135:

ar _ M+ pYiP
g M pPYiro

X
‘;—t = —AxeX — pRM“X ++ I+ pyxePo

where p is the normalized power (1.0 = 100% power).
Power History:

* 0-5 hours: 100% power
5-15 hours: Shutdown
15-50 hours: 100% power
50-80 hours: 40% power
80-100 hours: Shutdown
100-150 hours: 100% power

Key features of the xenon transient:

1. Imitial equilibrium (0-5 hours): At 100% power, xenon reactivity = -2900 pcm
2. First shutdown (5-15 hours):

» Xenon burnout stops immediately (no neutron flux)

 -135 continues to decay into Xe-135

» Xenon concentration rises, reaching a peak around 8-9 hours after shutdown
* Most negative xenon reactivity occurs

3. Return to full power (t = 15 hours):

» Xenon burnout resumes at full rate
* System returns to equilibrium at 100% power
» Xenon reactivity returns to -2900 pcm

4. Power reduction to 40% (t = 50 hours):
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* Peak less pronounced due to lower initial I-135 inventory

Reduced burnout rate (40% of full power)

Xenon concentration increases

System approaches new equilibrium at 40% power
Equilibrium xenon significantly higher at lower power

5. Second shutdown (80-100 hours):

* Similar xenon peak behavior to first shutdown
e Starting from 40% power equilibrium

6. Return to full power (t = 100 hours):

* Final return to 100% power operation
* System approaches equilibrium xenon level
» Xenon reactivity returns to -2900 pcm

The xenon transient is shown in the figure below (computed using scipy.integrate.odeint):
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from scipy.integrate import odeint

# Define ODE system
def xenon_ode(y, t, power_func):

I, X =1y

t_hours = t / 3600

rho = power_func(t_hours)

dI_dt = -lambda_I * I + rho * gamma_I * PO

dX_dt -lambda_Xe * X - rho * R_max * X + lambda_I * I + rho x
gamma_Xe * PO

return [dI_dt, dX_dt]

# Initial conditions at full power equilibrium
I0 = gamma_I * PO / lambda_I
X0 = abs(Xe_eq_reactivity) / K

# Solve ODE over time period

t_hours = np.linspace(0, 150, 2000)

t_seconds = t_hours * 3600

solution = odeint(xenon_ode, [IO, XO0], t_seconds, args=(get_power,))

# Find peak after first shutdown (5-15 hours)

X_transient = solutionl[:, 1]
Xe_reactivity = -K * X_transient

mask = (t_hours >= 5) & (t_hours <= 15)
peak_idx = np.argmin(Xe_reactivity[mask])
Solution

After the first shutdown at t = 5 hours (shutdown period: 5-15 hours), xenon-135 concentration
increases due to:

1. Continued decay of I-135 inventory into Xe-135
2. Elimination of xenon burnout (no neutron flux)

The peak occurs when the production rate from I-135 decay equals the Xe-135 decay rate. This
typically happens 8-12 hours after shutdown from full power operation.
Given parameters:

¥ = 0.057 (I-135 fission yield)

Yxe = 0.003 (Xe-135 fission yield)

Ar=2.87x 1077 sec™ ! (I-135 decay, 1 , = 6.7 hr)
Axe =2.09 x 1079 sec™! (Xe-135 decay, )2 = 9.2 hr)
RMax — 734 % 1075 sec™! (full power burnout)

K = 4.56 pcm-sec ™!
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* Initial Xe reactivity = -2900 pcm (at 100% power)

Initial equilibrium concentrations (100% power):
At equilibrium with p = 1.0:

P
Loy = % — 1985.12 [arb. units]
1

X | Xe reactivity| 2900
“a K 4.56
Results from numerical integration:

= 635.96 [arb. units]

’Time of peak: # = 13.36 hours ‘

| Time after shutdown: Ar = 8.36 hours |

’ Peak xenon reactivity: — 5261 pcm ‘

Problem 6
Part A

Core design that prohibits adequate transfer of power between core regions will increase the likeli-
hood of oscillations. In our notes for *Simplified Parallel Coupled Reactors’, we summarized this
communication between reactor regions as a parameter g. Designs that have connections between
areas with small g will suffer from worse oscillations. I would presume reactors that have large
aspect ratios would suffer more from oscillations, as it would be harder for different ends of the
reactor core to ’communicate’ with one another.

Part B

These oscillations will cause damage to the fuel and reactor over time. The reactor is presumably
not designed to carry such high power loads in localized regions of the reactor, as opposed to a
balanced power load across the entire reactor core.

Part C

Oscillations might impact core protection or safety analysis by obscuring the actual reactivity or
temperature values inside the reactor core. Without proper care to obtain good measurements, a
reactor operator could not be aware that certain oscillating areas of the core are exceeding temper-
ature and local power limits, all the while the reactor as a whole may appear as if it’s behaving
normally. The result is that while coolant flow in and out of the reactor maintain normal tempera-
ture, oscillating fuel rods may actually be pushing beyond designed limits, and compromising their
cladding, performance, or other important characteristics..
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