Diffusion Generative Models For Unstructured Uncertainty Perturbations

The goal of this research is to use a generative diffusion model to create

unstructured perturbations of a nominal plant. If this research is successful, we will

be able to use a diffusion generative model to do the following:

1. Generate Bode plots based on training data of example dynamic systems

2. Perturb a nominal plant in an unstructured manner with a controllable amount

of uncertainty

3. Approximate a set of controllable plants by generating a large number of

perturbed examples

The diffusion generative model has shown great promise in creating novel and

realistic samples from training data. This research will train a generative model to

create Bode plots of transfer functions. This model will be given a nominal plant as

an input and then generate a perturbed plant. Once created, this perturbed plant can

be evaluated if it belongs to the set of controllable plants for a desired controller.

This process will be repeated several times to generate enough plants to

approximate the set.

These generated plants can be used to verify robustness of controller

implementations. A model of a controller can use robust control theory to establish

the set of controllable plants, but an actual implementation of a controller can not be

verified as robust in the same way. Instead, it must be verified experimentally using

elements of the set. Extracting elements of the set is not a trivial task, but if this

research is successful, a generative model can reduce the effort required to create

perturbed plants.

STATS: 250 / 250 words