# Chapter 1: ![[Pasted image 20241012132644.png]] Notable signals: - r - reference or command input - e - tracking error - u - control signal, controller output - d - plant distrurbance - y - plant output - n - sensor # Chapter 2 - Norms >[!note] Signal Norms >1-Norm: > $$||u||_1 = \int_{-\infty}^{\infty} |u(t)|dt$$ > 2-Norm: > $$||u||_2 = \left(\int_{-\infty}^{\infty} u(t)^2 dt \right)^{1/2}$$ > $\infty$-Norm > $$||u||_\infty = \sup_t |u(t)|$$ > Power Signals (Not really a norm): > $$pow(u) = \left( \lim_{T\rightarrow \infty} \frac{1}{2T} \int_{-T}^T u(t)^2 dt \right)^{1/2}$$ > If the limit exists, u is called a *power signal* > > [!caution] Some Implications > >1. $||u||_2 < \infty \rightarrow pow(u) = 0$ > >2. u is a power signal and $||u||_\infty < \infty \rightarrow pow(u) \leq ||u||_\infty$ > >3. There's a third one in the book about the one norm. I'm ignoring it. >[!nnote] System Norms >$\hat G$ means the transfer function $G$ in the frequency domain. >2-Norm: >$$||\hat G||_2 = \left(\frac{1}{2\pi} \int_{-\infty}^\infty |\hat G(j\omega)|^2d\omega \right) ^{1/2} $$ >$\infty$-norm >$$||\hat G||_\infty = \sup_{\omega} |\hat G(j\omega)|$$ >>[!hint] Parseval's Theorem >> If $\hat G$ is stable, then >> $$ ||\hat G||_2 = \left(\frac{1}{2\pi} \int_{-\infty}^\infty |\hat G(j\omega)|^2d\omega \right) ^{1/2} = \left( \int_{\infty}^\infty |G(t)|^2 dt \right)^{1/2}$$ ![[Pasted image 20241012135404.png]]