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Related Reading

• Chapter 5 of Duderstadt and Hamilton

OR

• Sections 5.1-5.7 Lamarsh and Baratta

• Sections 6.1-6.4 Lamarsh and Baratta
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Learning Objectives

• Calculate the fundamental mode (scalar flux 
and multiplication factor) for a given power 
based on the one-group reactor equation 
for common geometrical configurations. Be 
able to find the reactor dimensions which 
will establish criticality for a given material 
composition.
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Fission Neutron Source

• Previously we have not said much about the 
neutron source term.

– In our derivations it has simply been represented as 
an unknown function.

• In a nuclear reactor our neutron source is due 
to neutrons produced during fission events.

• Let’s see if we can derive an equation for the 
fission neutron source term, replacing the 
generic 
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Fission Neutron Source

• Derive an equation for the fission neutron 
source term [neutrons/second]

• Start with the fission reaction rate density:

– This gives the instantaneous rate at which 
fissions are occurring.
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Fission Neutron Source
• Start with the fission reaction rate density:

• Each fission event releases      
[neutrons/fission] fission neutrons, on 
average.

• Fission neutron production rate density:
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Fission Neutron Source

• This is referred to as a multiplying source term (opposed to 
a fixed source term) because the magnitude of the source 
at every point depends on the flux at the point.

• Replacing our fixed-source gives us the diffusion equation in 
a multiplying medium
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Diffusion in Multiplying System

• The diffusion equation in a multiplying system allows us to 
describe the neutron population in a critical reactor 

– Equation as written on the previous slide assumes balance of 
production and loss

• Equation as written only has a solution for a critical mixture

– Very unlikely to design a perfectly critical system on the first 
try

– Not finding a solution does not give us any information about  
the criticality of the system

• Solution is to write problem as an eigenvalue problem

– multiplication (k) is most common
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Eigenvalue Problems

• In an eigenvalue problem we seek a nontrivial solution to some 
linear equation

– Results are a set of eigenvalues and eigenfunctions if we are 
working with continuous operators

– Eigenvalues and eigenvectors if we are talking about matrix 
equations

• Eigenvalue problems are prevalent in science and engineering

– Vibrating strings / membranes

– Structural mechanics 

– Molecular Orbitals
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The k Eigenvalue
• To ensure we have a solution for any system configuration 

we imagine that the number of neutrons emitted per 
fission can be changed

• In this way any system can be made critical by choosing 
the appropriate value of k

k
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The k Eigenvalue

• There will be a largest value of k for which the scalar flux is 
nonnegative

– If k=1 this implies the system is critical (time independent 
neutron balance)

– If k<1 it implies the hypothetical number of neutrons per fission 
needs to increase

– If k>1 it implies the hypothetical number of neutrons per fission 
needs to decrease
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Diffusion in Multiplying Media

• Define material buckling:

• We can then write the one-group reactor 
problem as:
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One-Group Reactor Equation

• We can also write this equation as

• Which can be solved for k, yielding

• Where B2 is still unknown

– Let’s find the B2
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Bare Slab Reactor

• Infinite bare slab of thickness a

• Zero flux boundaries

• Due to symmetry no net flow through center of slab
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Bare Slab Reactor

• General Solution

• Imposing zero net current
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Bare Slab Reactor

• Imposing zero flux boundaries

– Either c2 = 0 (and flux = 0) or

• With this value of B2  we find that
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Multiple Solutions

• The subscript n indicates there are many 
solutions which solve the one-group reactor 
equation, called harmonic modes

• Really, any of the possible solutions are valid 
solutions
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Fundamental Mode

• As n increase k decreases

• Higher order modes become increasingly subcritical (decreasing 
neutron population). If we wait long enough only 1st mode 
remains, called fundamental mode

• Reactor properties determined by the fundamental mode
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Harmonic Modes

• Let’s consider the slab problem for a=1cm

for the first few values of n (first few harmonic modes), 
where the flux is normalized by the as of yet undetermined 

• Plotting the scalar flux we see that only the fundamental 
mode is positive over the length of the slab

– Confirms that it is the mode of interest since flux must be a 
positive quantity
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First Few Flux Modes
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Criticality Condition

Multiplication factor is given by

where the buckling modes are given by

and the geometric buckling is defined as 
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Criticality Condition

• Set k=1 and solve for geometric buckling

• In a critical system the geometric buckling is equal to the 
material buckling 

– To achieve criticality the system requires compatible 
materials and geometric configuration
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Criticality Condition

• Geometric Buckling is a measure of the curvature of the flux in 
the reactor (measurement of the extent to which the flux 
curves/buckles)

• Term comes from structural mechanics where the same 
equation can be used to describe the deformation of a beam 
under static load (buckling modes)
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Fundamental Mode

• We now know the flux and multiplication are described by 
the fundamental mode

but we still need to find 

• To find a unique value of         we can write it in terms of 
the current power level!
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Power Calculation
• The power produced in the reactor is
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General Geometries

• We have solved the one-group reactor 
criticality problem for a slab by finding the 
geometric buckling and equating to the 
material buckling

• Can we do the same thing for other 
geometries?

– Yes, in fact it is the exact same process
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Process for General Geometries

• Find geometric buckling 

– Solve differential equation for desired geometry OR

– See Table 6.2 in L&B for common geometries

• Find the constant in terms of total power

• Find k by substituting the geometric buckling 
equation in

– If searching for critical dimension then set material 
buckling to geometric buckling and solve for the desired 
dimension

27



Stephen R. Tritch
Nuclear Engineering Program

28



Stephen R. Tritch
Nuclear Engineering Program

More Problems

• The majority of the diffusion material can be 
found in Lamarsh and Baratta

– Example problems in the Sections 5.1-5.7 and 
6.1-6.4 are good practice

– Can find derivations for additional geometries 

• Problems at the end of Chapters 5 and 6 
cover material in the indicated sections 
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