

Related Reading

Chapter 5 of Duderstadt and Hamilton

OR

- Sections 5.1-5.7 Lamarsh and Baratta
- Sections 6.1-6.4 Lamarsh and Baratta

Learning Objectives

 Calculate the fundamental mode (scalar flux and multiplication factor) for a given power based on the one-group reactor equation for common geometrical configurations. Be able to find the reactor dimensions which will establish criticality for a given material composition.

- Previously we have not said much about the neutron source term.
 - In our derivations it has simply been represented as an unknown function.
- In a nuclear reactor our neutron source is due to neutrons produced during fission events.
- Let's see if we can derive an equation for the fission neutron source term, replacing the generic $s(\vec{r},t)$

- Derive an equation for the fission neutron source term [neutrons/second]
- Start with the fission reaction rate density:

$$\Sigma_f(\vec{r},t)\phi(\vec{r},t)$$
 fissions / second

 This gives the instantaneous rate at which fissions are occurring.

Start with the fission reaction rate density:

$$\Sigma_f(\vec{r},t)\phi(\vec{r},t)$$
 fissions / second

- Each fission event releases v
 [neutrons/fission] fission neutrons, on average.
- Fission neutron production rate density:

$$v\Sigma_f(\vec{r},t)\phi(\vec{r},t)$$
 neutrons produced / second

$$\nu \Sigma_f(\vec{r},t) \phi(\vec{r},t)$$

- This is referred to as a multiplying source term (opposed to a fixed source term) because the magnitude of the source at every point depends on the flux at the point.
- Replacing our fixed-source gives us the diffusion equation in a multiplying medium

$$-D\frac{d^{2}}{d^{2}x}\phi(x) + \Sigma_{a}\phi(x) = \nu\Sigma_{f}(\vec{r},t)\phi(\vec{r},t)$$

Diffusion in Multiplying System

- The diffusion equation in a multiplying system allows us to describe the neutron population in a critical reactor
 - Equation as written on the previous slide assumes balance of production and loss
- Equation as written <u>only</u> has a solution for a critical mixture
 - Very unlikely to design a perfectly critical system on the first try
 - Not finding a solution does not give us any information about the criticality of the system
- Solution is to write problem as an eigenvalue problem
 - multiplication (k) is most common

Eigenvalue Problems

- In an eigenvalue problem we seek a nontrivial solution to some linear equation
 - Results are a set of eigenvalues and eigenfunctions if we are working with continuous operators
 - Eigenvalues and eigenvectors if we are talking about matrix equations
- Eigenvalue problems are prevalent in science and engineering
 - Vibrating strings / membranes
 - Structural mechanics
 - Molecular Orbitals

The k Eigenvalue

- To ensure we have a solution for any system configuration we imagine that the number of neutrons emitted per fission can be changed $v \to \frac{v}{k}$
- In this way <u>any</u> system can be made critical by choosing the appropriate value of k

$$-D\frac{d^{2}}{d^{2}x}\phi(x)+\Sigma_{a}\phi(x)=\frac{v}{k}\Sigma_{f}(\vec{r},t)\phi(\vec{r},t)$$

The k Eigenvalue

- There will be a largest value of k for which the scalar flux is nonnegative
 - If k=1 this implies the system is critical (time independent neutron balance)
 - If k<1 it implies the hypothetical number of neutrons per fission needs to increase
 - If k>1 it implies the hypothetical number of neutrons per fission needs to decrease

$$v \to \frac{v}{k}$$

$$\begin{cases} > 1 \text{ supercritical} \\ = 1 \text{ critical} \\ < 1 \text{ subcritical} \end{cases}$$

Diffusion in Multiplying Media

$$-D\frac{d^2}{dx^2}\phi(x) + \Sigma_a \phi(x) = \frac{v}{k} \Sigma_f \phi(x)$$

Define material buckling:

$$B_m^2 = \frac{\left(\frac{v}{k} \Sigma_f - \Sigma_a\right)}{D}$$

• We can then write the one-group reactor problem a $\frac{d^2}{dx^2}\phi(x) + B^2\phi(x) = 0$

One-Group Reactor Equation

We can also write this equation as

$$DB^{2}\phi(x) + \Sigma_{a} \phi(x) = \frac{v}{k} \Sigma_{f}\phi(x)$$

Which can be solved for k, yielding

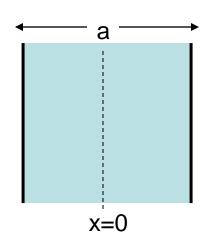
$$k = \frac{v\Sigma_f \phi(x)}{DB^2 \phi(x) + \Sigma_a \phi(x)} = \frac{v\Sigma_f}{DB^2 + \Sigma_a}$$

- Where B² is still unknown
 - Let's find the B²

Bare Slab Reactor

Infinite bare slab of thickness a

$$\frac{d^2}{dx^2}\phi(x) + B^2 \phi(x) = 0$$



Zero flux boundaries

$$\phi\left(-\frac{a}{2}\right) = \phi\left(-\frac{a}{2}\right) = 0$$

$$J(0) = 0 \to \frac{d}{dx} \varphi \Big|_{x=0} = 0$$

Due to symmetry no net flow through center of slab

Bare Slab Reactor

General Solution

$$\phi(x) = c_1 \sin(Bx) + c_2 \cos(Bx)$$

Imposing zero net current

$$\left. \frac{d}{dx} \phi(x) \right|_{x=0} = Bc_1 \cos(0) - B c_2 \sin(0) = 0$$
$$= Bc_1 \cos(0) = 0$$
$$c_1 = 0$$

$$\phi(x) = c_2 \cos(Bx)$$

Bare Slab Reactor

Imposing zero flux boundaries

$$\phi\left(\frac{a}{2}\right) = c_2 \cos\left(\frac{Ba}{2}\right) = 0$$

- Either $c_2 = 0$ (and flux = 0) or

$$\cos\left(\frac{Ba}{2}\right) = 0 \to B_n = \frac{n\pi}{a}, \quad n = 1, 3, 5, \dots, \infty$$

• With this value of B² we find that

$$\phi_n(x) = c_n \cos\left(\frac{n\pi x}{a}\right)$$

Multiple Solutions

 The subscript n indicates there are many solutions which solve the one-group reactor equation, called harmonic modes

$$\phi_n(x) = c_n \cos\left(\frac{n\pi x}{a}\right)$$

 Really, any of the possible solutions are valid solutions

$$\phi(x) = \sum_{n=1,3,5,\dots}^{\infty} c_n \cos\left(\frac{n\pi x}{a}\right) = \sum_{n=1}^{\infty} c_n \cos\left(\frac{(2n-1)\pi x}{a}\right)$$

Fundamental Mode

As n increase k decreases

$$k_n = \frac{v\Sigma_f}{DB_n^2 + \Sigma_a} = \frac{v\Sigma_f}{\frac{D\pi^2}{a^2}(2n-1)^2 + \Sigma_a}$$

 Higher order modes become increasingly subcritical (decreasing neutron population). If we wait long enough only 1st mode remains, called fundamental mode

$$k_1 = \frac{v\Sigma_f}{D\pi^2 + \Sigma_a} = k_{\text{eff}}$$

Reactor properties determined by the fundamental mode

Harmonic Modes

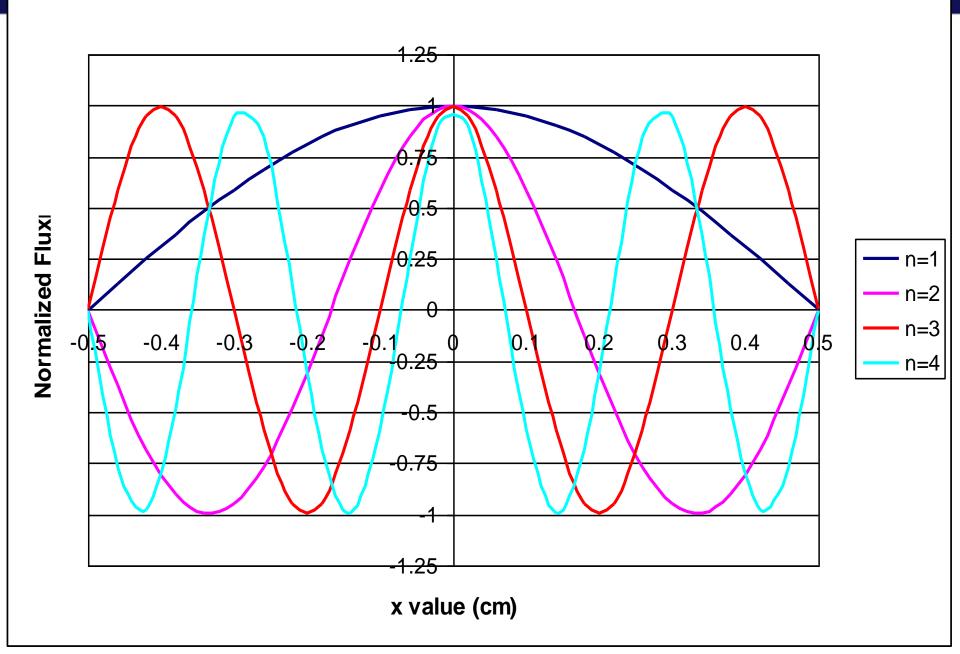
Let's consider the slab problem for a=1cm

$$\phi_n(x) = c_n \cos((2n-1)\pi x)$$

for the first few values of n (first few harmonic modes), where the flux is normalized by the as of yet undetermined \mathcal{C}_n

- Plotting the scalar flux we see that only the fundamental mode is positive over the length of the slab
 - Confirms that it is the mode of interest since flux must be a positive quantity

First Few Flux Modes



Criticality Condition

Multiplication factor is given by

$$k = \frac{v\Sigma_f}{DB_g^2 + \Sigma_a}$$

where the buckling modes are given by

$$B_n = (2n-1)\frac{\pi}{a}, \quad n = 1, 2, 3, \dots, \infty$$

and the geometric buckling is defined as

$$(B_1)^2 = \left(\frac{\pi}{a}\right)^2 = (B_g)^2$$

Criticality Condition

Set k=1 and solve for geometric buckling

$$k = \frac{v\Sigma_f}{DB_g^2 + \Sigma_a} \to DB_g^2 + \Sigma_a = v\Sigma_f$$

$$B_g^2 = \frac{\nu \Sigma_f - \Sigma_a}{D} = B_m^2$$

- In a critical system the geometric buckling is equal to the material buckling
 - To achieve criticality the system requires compatible materials and geometric configuration

Criticality Condition

 Geometric Buckling is a measure of the curvature of the flux in the reactor (measurement of the extent to which the flux curves/buckles)

$$\frac{d^2\phi}{dx^2} + B_1^2\phi = 0 \to B_1^2 = -\frac{1}{\phi} \frac{d^2\phi}{dx^2}$$

 Term comes from structural mechanics where the same equation can be used to describe the deformation of a beam under static load (buckling modes)

$$B_m^2 > B_g^2$$
 supercritical $B_m^2 = B_g^2$ critical $B_m^2 < B_g^2$ subcritical

Fundamental Mode

 We now know the flux and multiplication are described by the fundamental mode

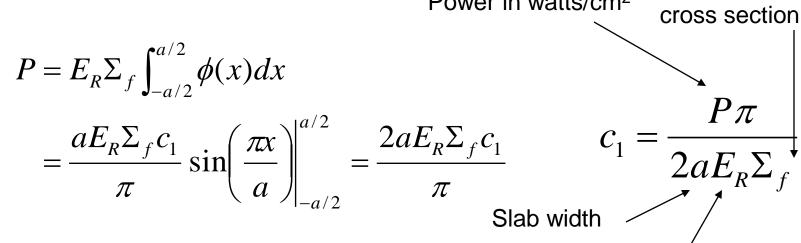
$$\phi_1(x) = c_1 \cos\left(\frac{\pi x}{a}\right)$$

but we still need to find C_1

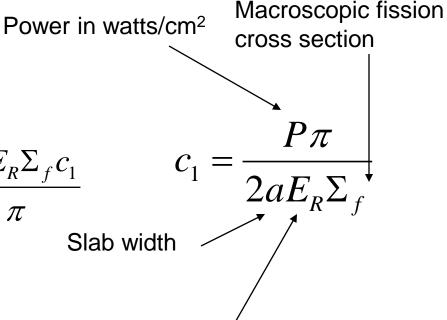
 $\bullet\,$ To find a unique value of $\,c_1\,$ we can write it in terms of the current power level!

Power Calculation

The power produced in the reactor is



$$\phi(x) = \frac{P\pi}{2aE_R \Sigma_f} \cos\left(\frac{\pi x}{a}\right)$$



Energy recoverable from fission (joules/fission)

General Geometries

- We have solved the one-group reactor criticality problem for a slab by finding the geometric buckling and equating to the material buckling
- Can we do the same thing for other geometries?
 - Yes, in fact it is the exact same process

$$k = \frac{v\Sigma_f}{DB_g^2 + \Sigma_a}$$

Process for General Geometries

- Find geometric buckling
 - Solve differential equation for desired geometry OR
 - See Table 6.2 in L&B for common geometries
- Find the constant in terms of total power
- Find k by substituting the geometric buckling equation in
 - If searching for critical dimension then set material buckling to geometric buckling and solve for the desired dimension

TABLE 5-1 Geometric Bucklings and Critical Flux Profiles Characterizing Some Common Core Geometries

		Geometric Buckling B_g^2	Flux profile
Slab		$\left(\frac{\pi}{\widetilde{a}}\right)^2$	$\cos \frac{\pi x}{\tilde{a}}$
Infinite Cylinder	R	$\left(rac{ u_0}{ ilde{R}} ight)^2$	$J_0\!\!\left(rac{ u_0 r}{ ilde{R}} ight)$
Sphere		$\left(rac{\pi}{ ilde{R}} ight)^2$	$r^{-1}\sin\left(\frac{\pi r}{\tilde{R}}\right)$
Rectangular Parallelepiped		$\left(\frac{\pi}{\tilde{a}}\right)^2 + \left(\frac{\pi}{\tilde{b}}\right)^2 + \left(\frac{\pi}{\tilde{c}}\right)^2$	$\cos\left(\frac{\pi x}{\tilde{a}}\right)\cos\left(\frac{\pi y}{\tilde{b}}\right)\cos\left(\frac{\pi z}{\tilde{c}}\right)$
Finite Cylinder	R H H	$\left(\frac{\nu_0}{\tilde{R}}\right)^2 + \left(\frac{\pi}{\tilde{H}}\right)^2$	$J_0\left(\frac{\nu_0 r}{\tilde{R}}\right) \cos\left(\frac{\pi z}{\tilde{H}}\right)$

More Problems

- The majority of the diffusion material can be found in Lamarsh and Baratta
 - Example problems in the Sections 5.1-5.7 and 6.1-6.4 are good practice
 - Can find derivations for additional geometries
- Problems at the end of Chapters 5 and 6 cover material in the indicated sections