(&) University of Pittsburgh

- o
vvvvvvv

ME/ENGR 2100
Fundamentals of Nuclear
Engineering

Neutron Diffusion:
Multiplying Media
Dr. Daniel F. Gill

Stephen R. Tritch Engineering
Swanson School of Engineering
University of Pittsburgh




Stephen R. Tritch ,
Nuclear Engineering Program [’

S
5
-

<>

(%“ University of Pittsburgh

Related Reading

e Chapter 5 of Duderstadt and Hamilton

OR

e Sections 5.1-5.7 Lamarsh and Baratta

e Sections 6.1-6.4 Lamarsh and Baratta
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Learning Objectives

e Calculate the fundamental mode (scalar flux
and multiplication factor) for a given power
based on the one-group reactor equation
for common geometrical configurations. Be
able to find the reactor dimensions which
will establish criticality for a given material
composition.
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Fission Neutron Source

* Previously we have not said much about the
neutron source term.

— In our derivations it has simply been represented as
an unknown function.

e |n a nuclear reactor our neutron source is due
to neutrons produced during fission events.

e Let’s see if we can derive an equation for the
fission neutron source term, replacing the
generic s(r.t)
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Fission Neutron Source

e Derive an equation for the fission neutron
source term [neutrons/second]

e Start with the fission reaction rate density:

2 (F,t)¢(T,t) fissions / second

— This gives the instantaneous rate at which
fissions are occurring.
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Fission Neutron Source
e Start with the fission reaction rate density:

2, (F,t)¢(?,t) fissions / second
e Fach fission event releases v

[neutrons/fission] fission neutrons, on
average.

e Fission neutron production rate density:

VE (f",t) ¢(F,t) neutrons produced / second
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Fission Neutron Source

V2, (T,1) ¢(T,t)

e This is referred to as a multiplying source term (opposed to
a fixed source term) because the magnitude of the source
at every point depends on the flux at the point.

e Replacing our fixed-source gives us the diffusion equation in
a multiplying medium

DL p()+2, 9(x) =12, (1) (7.1
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Diffusion in Multiplying System

e The diffusion equation in a multiplying system allows us to
describe the neutron population in a critical reactor

— Equation as written on the previous slide assumes balance of
production and loss

e Equation as written only has a solution for a critical mixture

— Very unlikely to design a perfectly critical system on the first
try

— Not finding a solution does not give us any information about
the criticality of the system

e Solution is to write problem as an eigenvalue problem
— multiplication (k) is most common
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Eigenvalue Problems

e |n an eigenvalue problem we seek a nontrivial solution to some
linear equation

— Results are a set of eigenvalues and eigenfunctions if we are
working with continuous operators

— Eigenvalues and eigenvectors if we are talking about matrix
equations

e Eigenvalue problems are prevalent in science and engineering

— Vibrating strings / membranes
— Structural mechanics

— Molecular Orbitals
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The k Eigenvalue

e To ensure we have a solution for any system configuration
we imagine that the number of neutrons emitted per
fission can be changed N |14

e |n this way any system can be made critical by choosing
the appropriate value of k

d? v

D () +2, 4(x) =%, (RO 4(F.1)

10
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The k Eigenvalue

e There will be a largest value of k for which the scalar flux is
nonnegative

— If k=1 this implies the system is critical (time independent
neutron balance)

— If k<1 it implies the hypothetical number of neutrons per fission
needs to increase

— If k>1 it implies the hypothetical number of neutrons per fission
needs to decrease

> 1 supercritical
V- — ki= 1 critical
< 1 subcritical

11
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e Define material buckling:

e
B °=

" D
e We can then write the one-group reactor

problem a (2
W¢(X)+ B ¢(x)=0

12
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One-Group Reactor Equation

e \We can also write this equation as

DBZ¢(x)+Z, ¢(x)=1Z,4(x)
e Which can be solved for k, yielding
v2f¢(x) VX,

K

" DB%Y(x)+x, o(x) DB +x,

e Where B?is still unknown
— Let’s find the B2

13
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Bare Slab Reactor

a
e Infinite bare slab of thickness a 5
d? ,
——olX)+ B olx)=0
& o)+ 87 4
e Zero flux boundaries x=0
a4 A JO)=0-2p| =0
OREE :

e Due to symmetry no net flow through center of slab

14
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Bare Slab Reactor

e General Solution
#(x)=c, sin(Bx)+ c, cos(Bx)

e I[mposing zero net current

%¢(x)‘ = Bc, cos(0)-B ¢, sin(0)=0

= Bc, cos(0)=0
c, =0

#(x)=c, cos(Bx) )
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Bare Slab Reactor

e Imposing zero flux boundaries

a Ba
¢(§j =C, cos(7j =0

— Either c,=0 (and flux = 0) or

cos(%j:0—> B, :n—ﬂ, n=135,...,00
2 a

e \With this value of B2 we find that

¢ (x)=c, cos(n—ﬂx)

a

16
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Multiple Solutions

e The subscript n indicates there are many
solutions which solve the one-group reactor

equation, called

a

¢ (x)=c, cos(n—ﬂx)

narmonic modes

e Really, any of the possible solutions are valid

solutions

Z C, cos(

n=1,3,5,.

- j Zc cos((2n 1)7sz

a

17
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Fundamental Mode

As n increase k decreases
V2 V2,
DB’+x, Dz’

2 (2n-1y +2,
Higher order modes become increasingly subcritical (decreasing
neutron population). If we wait long enough only 1st mode
remains, called fundamental mode
V2
kl = = keff

2

k

n

D

a.2

Reactor properties determined by the fundamental mode

+2,

18
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Harmonic Modes

e Let’s consider the slab problem for a=1cm

¢,(x)=c, cos((2n—1)zx)

for the first few values of n (first few harmonic modes),
where the flux is normalized by the as of yet undetermined C,

e Plotting the scalar flux we see that only the fundamental
mode is positive over the length of the slab

— Confirms that it is the mode of interest since flux must be a
positive quantity

19



First Few Flux Modes

N

\ A/

AN

[ NAT TN

\ AL/

AV VA

value (cm)




Stephen R. Tritch
Nuclear Engineering Program

)) University of Pittsburgh

Criticality Condition

Multiplication factor is given by
VX

K = >
DB, +%,

where the buckling modes are given by

B. =(2n-1)Z, n=123,...,
a

and the geometric buckling is defined as

21
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Criticality Condition

e Set k=1 and solve for geometric buckling

1229 5
K = > — DB,"+X, =VZ,
DB, +%,
VX, —2
Bgzz f a:BmZ
D

e |n acritical system the geometric buckling is equal to the
material buckling

— To achieve criticality the system requires compatible
materials and geometric configuration

22
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Criticality Condition

e Geometric Buckling is a measure of the curvature of the flux in
the reactor (measurement of the extent to which the flux
curves/buckles)

2
d¢+B¢ 0 Bzz—ld—?
dx’ ¢ dx

e Term comes from structural mechanics where the same
equation can be used to describe the deformation of a beam
under static load (buckling modes)

B; >B; supercritical
B, =B; critical
B <B; subcritical

23
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Fundamental Mode

e We now know the flux and multiplication are described by
the fundamental mode

¢(x)=c, cos(ﬁj

d
but we still need to find €4

e To find a unique value of ¢, we can write it in terms of
the current power level!

24
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Power Calculation
e The power produced in the reactor is

Power in watts/cm?2 Macroscopic fission
Cross section

P=E.Z, [ g(x)dx \

aE.> .c e i
— R 1sin(ﬁj

/A a JT
malz Slab width //
Pr 7TX
CcoS

Energy recoverable from
fission (joules/fission)

25
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General Geometries

e We have solved the one-group reactor

criticality problem for a slab by finding the

geometric buckling and equating to the
material buckling

e Can we do the same thing for other
geometries?

— Yes, in fact it is the exact same process

VX

K = >
DB, +Z%,

26
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Process for General Geometries

e Find geometric buckling

— Solve differential equation for desired geometry OR

— See Table 6.2 in L&B for common geometries

e Find the constant in terms of total power

e Find k by substituting the geometric buckling
equation in

— |If searching for critical dimension then set material
buckling to geometric buckling and solve for the desired
dimension

27
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More Problems

e The majority of the diffusion material can be
found in Lamarsh and Baratta

— Example problems in the Sections 5.1-5.7 and
6.1-6.4 are good practice

— Can find derivations for additional geometries

e Problems at the end of Chapters 5 and 6
cover material in the indicated sections

29



