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Related Reading

• Chapter 5 of Duderstadt and Hamilton

OR

• Sections 5.1-5.7 Lamarsh and Baratta

• Sections 6.1-6.4 Lamarsh and Baratta
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Learning Objectives

• Calculate the neutron distribution due to an 
external source in a non-multiplying 
medium for common geometrical 
configurations
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Diffusion Length

• Rewrite this equation as

• The variable L is called the diffusion length and L2 is called the diffusion area 

– The diffusion length has units of cm and the diffusion area of cm2
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Diffusion Length

• It can be shown that 

• L is           of the root mean square distance to absorption

• L measures the distance to which the neutron will diffuse (on 
average) away from the source before being absorbed

– Not the same as the total path length since the neutron will 
undergo many reactions between being emitted from the source 
and being absorbed

– Also much larger than a mean free path
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Differential Equation Solution

• The differential equation

has the following solution

where the homogeneous solution must satisfy the boundary 
conditions and the particular solution our source term
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Example 1: Semi-Infinite Slab

• No particular 
solution in this case
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Example 1: Semi-Infinite Slab

• Finite Flux
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Example 2: Finite Slab

• Again, no particular 
solution
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Example 2: Finite Slab
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Example 2: Finite Slab
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Example 3: Finite Slab, with source

• Need to find 
particular solution
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Example 3: Finite Slab, with source
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Example 3: Finite Slab, with source
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Example 3: Finite Slab, with source
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Example 4: Point Source
• Consider a point source emitting Q neutrons / sec (isotropically) in an 

infinite medium. 

– Only dependence on r (no angular dependence)

– In spherical coordinates 

• Boundary Conditions:
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Example 4: Point Source

• General solution to this problem is given by

• Applying finite flux boundary condition
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Example 4: Point Source

• Applying current boundary condition
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Example 4: Point Source

• Resulting expression for 

• Making the flux due to a point source in an infinite medium 
equal to

• Different from the inverse square law we are accustomed to for 
point sources. Why? Does this describe the flux in a vacuum due 
to a point source?
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