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Related Reading

e Chapter 5 of Duderstadt and Hamilton

OR

e Sections 5.1-5.7 Lamarsh and Baratta

e Sections 6.1-6.4 Lamarsh and Baratta
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Learning Objectives

e Calculate the neutron distribution due to an
external source in a non-multiplying
medium for common geometrical
configurations
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Diffusion Length

_Dﬂ (x)—Z, #(x)=5s(x)

e Rewrite this equation as

CRPYINEE SV C)
e (X)—? (X)= D

e The variable Lis called the diffusion length and L?is called the diffusion area

L= |= 2= 2

5 2,

— The diffusion length has units of cm and the diffusion area of cm?
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Diffusion Length

e |t can be shown that

e Lis1/+/6 of the root mean square distance to absorption

e L measures the distance to which the neutron will diffuse (on
average) away from the source before being absorbed

— Not the same as the total path length since the neutron will
undergo many reactions between being emitted from the source

and being absorbed

— Also much larger than a mean free path
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Differential Equation Solution

e The differential equation
d’ 1 s(X)
Efb(x)—ﬁ (x)=-=—=

has the following solution

¢(X) = ¢homogeneous (X) + ¢particu|ar (X)

(x)=ce™" +c,e¥"

¢homogeneous

where the homogeneous solution must satisfy the boundary
conditions and the particular solution our source term
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Example 1: Semi-Infinite Slab

J(O) - So
3 D

e No particular —
solution in this case — 2

7 S(x)=0

X/ L

d(x)=ce " +c.e

x=0 X—©
e Boundary Conditions
J(0) =S,

lim ¢(x) < oo

X—>0
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Example 1: Semi-Infinite Slab

. S,L
e Finite Flux o
lim (ce ™" +c,e’t)<oo
X—>00
C2 — O x=0 X—00
e Incident Current e Flux Solution
~ ~de(¥)] S.L
J(0)=-D ™ X:O—SO ¢(X): 0 e—X/L
d —x/L D
_D (D(X) — Cle :SO
dx " L o
S,L
C =
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Example 2: Finite Slab

J(O) - So
3 D

e Again, no particular
solution — s, $(R)=0

7 S(x)=0

X/ L

. —x/L
#(X) =Ce " +Cpe x=0 x=R

e Boundary Conditions
J(0) = So
#(R)=0
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Example 2: Finite Slab
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J(0)=S
J(O)z—Ddgp(X) =S, (0) =S,
dx 0 — D
) #(R)=0
d —X X —_— Za =
—Da;@@’L+%e“) =, o
I ()=
_D(iex/L_i__zex/Lj —So
x=0 x=0 x=R
(Cl Cz):SLDL . .
S L Hyperbolic Functions
C,=C,+—
0 et —e "
S,L) ) - _s v
¢(X)=(C2 OFje /"+c2e I Slnh(X) >
¢(X):SLDLe—x/L_|_C2 (e_x/L _I_ex/L) ) COSh(X) _ € -;e
S.L

10
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Example 2: Finite Slab

$(R)=0
S L —-R/L
¢(R):°Fe +2c,cosh(R/L)=0

. —S,Le ™t x=0 x=R
* 2Dcosh(R/L)

_ ~RIL
P(X) = Sob gy o Sl cosh (5j
D 2Dcosh(R/L) L

L COSh(X/L) | S L(sinh((R—x)/L)
cosh(R/L)) D | cosh(R/L)

#(x) = S—DL[e e

11
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Example 3: Finite Slab, with source
e Need to find

. . D
particular solution 3(0)=0 5 H(R)=0
d2 1 5(X) 9=

R (X)_F (%)= D X=0
¢(X) = ¢homogeneous (X) + ¢particular (X)

. —x/L X/L
P(X)=Ce " +C" + Panicutar (X) We will first find

particular solution,

e Boundary Conditions guessing a constant
because our source is
J(0)=0 constant

#(R)=0

12
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Example 3: Finite Slab, with source

¢particu|ar (X) = F
d 2

d> . 1. S,

d’x 12 D
1>
L° D

F:%B:so

D =3,
¢particular (X) = 2_:

—X X S

#(x)=ce " +c. et +2_0

1
E ¢particular (X) o F ¢particular (X) - D

D
J(0)=0 5, H(R) =0
S(x)=3S,
x=0 X=R

We will first find
particular solution,
guessing a constant
because our source is
constant

13
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Example 3: Finite Slab, with source

deo(x) D
J(0)=-D =0
O=-=57 0=0| 3, 4(R)=0
d S S(x)=3S,
J(0) :—D—[clex’L +c,e’t +—°j =0
dx z.
x=0 x=0 x=R

L L

C, =G,

—C, _ C
_D( 1e x/L_'__zex/Lj

S
p(x)=ce " +ceft +=2

P(x) = 2¢, cosh(x/ L)+ 2—0
14
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Example 3: Finite Slab, with source

#(R)=0 J(0)=0 j #(R)=0
S

#(R) =2c, cosh(R /L) +2—° =0

a

_g x=0 X=R
C, = :
2% cosh(R/L)
$(x) =2 0 cosh(R /L) )
2% cosh(R/L) 2,

_S¢ [, cosh(x/L)
¢(X)_Za (1 cosh(R/L)j

15
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Example 4: Point Source

e Consider a point source emitting Q neutrons / sec (isotropically) in an
infinite medium.

— Only dependence on r (no angular dependence)

— In spherical coordinates

1 d . dolr) 1 (r)=0, r>0

__r' L S A

re dr dar L°

e Boundary Conditions:

limdzr®J(r) =Q lim@(r) <o

F—o0

16
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Example 4: Point Source

e General solution to this problem is given by

e—r/L er/L
¢(I’) =C——+C,—
I I

e Applying finite flux boundary condition

17
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Example 4: Point Source

e Applying current boundary condition

3(r)=-p30 __pe 4T

dr dr r
(_Le—r/L_e—r/L\
1 1)
=Dt — r2 :Dcl(rLJrrz)e /L
\ Y,

limzrJ (r) = |in34ﬂDc1({+1)er/L 0
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Example 4: Point Source

e Resulting expression for C,

_Q
47D

e Making the flux due to a point source in an infinite medium
equal to
—r/L
Qe

A= o

e Different from the inverse square law we are accustomed to for
point sources. Why? Does this describe the flux in a vacuum due
to a point source?

C
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