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Related Reading

• Chapter 5 of Duderstadt and Hamilton

OR

• Sections 5.1-5.7 Lamarsh and Baratta

• Sections 6.1-6.4 Lamarsh and Baratta
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Learning Objectives

• Define the scalar neutron flux and net neutron current and provide a physical interpretation of 
each quantity

• Write the mathematical conservation relationship describing the “exact” neutron balance 
(continuity equation) in non-multiplying systems

• Write the neutron diffusion equation describing neutron balances (gains and losses) in non-
multiplying systems

• Explain under what conditions the diffusion approximation to the continuity equation is valid 
and how its use in reactor analysis is justified

• Calculate the neutron distribution due to an external source in a non-multiplying medium for 
common geometrical configurations

• Calculate the fundamental mode (scalar flux and multiplication factor) for a given power based 
on the one-group reactor equation for common geometrical configurations. Be able to find the 
reactor dimensions which will establish criticality for a given material composition.
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Cross Section Review

• Microscopic
– Probability per unit area that an incident neutron of given energy 

and direction will interact with a specific nucleus

– Units of cm2  or barns (10-24 cm2)

• Macroscopic
– Probability per unit length that a specific neutron of known energy 

and direction will interact

– Units of 1/cm

• Reaction Rate
– Rate of neutron reactions (per unit volume and time) in a material

– Units of [Reactions/cm3/sec]
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Neutron Phase Space

• The location of any neutron is described uniquely by 7 
independent phase variables

– Spatial Location:

– Direction of travel:

– Energy (velocity): 

– Time: 

• These phase space variables are the independent variables in the equation 
describing the true balance of neutrons in a system

• To simplify the problem we will assume all neutrons have a single energy and 
that the same number of neutrons are traveling in each direction
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Neutron Density

• Using these assumptions, the neutron density (distribution) 
at any point in a reactor is

• This gives the number of neutrons that fall within volume 
dV at time t.

• Referred to as the Neutron Density.

• Sometimes referred to as scalar neutron density to indicate 
it includes neutrons traveling all directions

6

( ),n r t dV



Stephen R. Tritch
Nuclear Engineering Program

Scalar Neutron Flux

• dS is the total path length generated by all neutrons 
in       about       during time interval dt.

• Dividing dS by dt gives 

the rate at which neutrons in        about
point       generate path length at time t.

• is referred to as the scalar neutron flux
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Reaction Rate

• Total Reaction Rate Density

– Rate at which neutrons at position   , undergo 
any type of reaction.
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The equation of continuity

• The equation of continuity is the statement of the 
fact that since neutrons do not disappear 
unaccountably, the time rate of change in the 
number of neutrons in volume V must be accounted 
for by the known physical processes of production, 
absorption, and leakage 
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The equation of continuity

• The equation of continuity can be written

• Because all of the integrals were carried out 
over the same arbitrary volume the 
integrands must be equal. Thus
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The equation of continuity

• Using our definition of scalar flux we can 
rewrite the time rate of change term:

• Unfortunately we still have an equation with 
two unknowns, neutron flux and neutron 
current!
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Diffusion Approximation
• If the neutrons have an equal probability of 

traveling in any direction then it is reasonable 
to assume that neutrons will “diffuse” from 
regions of high density (flux) to regions of low 
density.
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Diffusion Approximation

• This diffusion process may be expressed 
mathematically by Fick’s Law:

– D is an empirical diffusion coefficient

• Fick’s law says that the net direction flow of 
neutrons will always be on the opposite direction of 
the neutron flux gradient (downhill) with magnitude 
(rate) determined by the diffusion coefficient D.
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Diffusion Approximation

• Using Fick’s law to relate the neutron current to the neutron flux 
gradient is an approximation – the Diffusion Approximation

• Good Approximation:

– In large, highly scattering materials

• Bad Approximation:

– Near leakage boundaries

– Near strong absorbers or sources

– In a vacuum   

– When scattering is strongly anisotropic
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Neutron Diffusion Equation

• We now have a differential equation in one variable (scalar neutron flux)

• Too bad this equation is too complicated to solve analytically.

• If we can’t solve the full equation, let’s start simplifying until we get 
something that we can solve!
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One Speed, 1-D, Steady-State Neutron 
Diffusion Equation

• Boundary Conditions (4 types)

– 1. Finite Flux Requirement

– 2. Incident Current Condition
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One Speed, 1-D, Steady-State Neutron 
Diffusion Equation

• Boundary Conditions

– 3. Reflecting Boundary

– 4. Zero Flux (Escape) Condition
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Diffusion Length

• Rewrite this equation as

• The variable L is called the diffusion length and L2 is called the diffusion area 

– The diffusion length has units of cm and the diffusion area of cm2
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Differential Equation Solution

• The differential equation

has the following solution

where the homogeneous solution must satisfy the boundary 
conditions and the particular solution our source term
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Example 1: Semi-Infinite Slab

• No particular 
solution in this case
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Example 1: Semi-Infinite Slab

• Finite Flux
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Fission Neutron Source

• This is referred to as a multiplying source term (opposed to 
a fixed source term) because the magnitude of the source 
at every point depends on the flux at the point.

• Replacing our fixed-source gives us the diffusion equation in 
a multiplying medium
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The k Eigenvalue
• To ensure we have a solution for any system configuration 

we imagine that the number of neutrons emitted per 
fission can be changed

• In this way any system can be made critical by choosing 
the appropriate value of k
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Diffusion in Multiplying Media

• Define material buckling:

• We can then write the one-group reactor 
problem as:
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Multiple Solutions

• The subscript n indicates there are many 
solutions which solve the one-group reactor 
equation, called harmonic modes

• Really, any of the possible solutions are valid 
solutions
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Fundamental Mode

• As n increase k decreases

• Higher order modes become increasingly subcritical (decreasing 
neutron population). If we wait long enough only 1st mode 
remains, called fundamental mode

• Reactor properties determined by the fundamental mode
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Criticality Condition

• Set k=1 and solve for geometric buckling

• In a critical system the geometric buckling is equal to the 
material buckling 

– To achieve criticality the system requires compatible 
materials and geometric configuration
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Fundamental Mode

• We now know the flux and multiplication are described by 
the fundamental mode

but we still need to find 

• To find a unique value of         we can write it in terms of 
the current power level!
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Power Calculation
• The power produced in the reactor is
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General Geometries

• We have solved the one-group reactor 
criticality problem for a slab by finding the 
geometric buckling and equating to the 
material buckling

• Can we do the same thing for other 
geometries?

– Yes, in fact it is the exact same process
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Process for General Geometries

• Find geometric buckling 

– Solve differential equation for desired geometry OR

– See Table 6.2 in L&B for common geometries

• Find the constant in terms of total power

• Find k by substituting the geometric buckling 
equation in

– If searching for critical dimension then set material 
buckling to geometric buckling and solve for the desired 
dimension
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