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Related Reading

e Chapter 5 of Duderstadt and Hamilton

OR

e Sections 5.1-5.7 Lamarsh and Baratta

e Sections 6.1-6.4 Lamarsh and Baratta
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Learning Objectives

e Define the scalar neutron flux and net neutron current and provide a physical interpretation of
each quantity

e Write the mathematical conservation relationship describing the “exact” neutron balance
(continuity equation) in non-multiplying systems

e Write the neutron diffusion equation describing neutron balances (gains and losses) in non-
multiplying systems

e Explain under what conditions the diffusion approximation to the continuity equation is valid
and how its use in reactor analysis is justified

e Calculate the neutron distribution due to an external source in a non-multiplying medium for
common geometrical configurations

e (Calculate the fundamental mode (scalar flux and multiplication factor) for a given power based
on the one-group reactor equation for common geometrical configurations. Be able to find the
reactor dimensions which will establish criticality for a given material composition.



(L

€5 Un; ' " Py Stephen R. Tritch
\§ University ot Pittsburgh ephen R. Tritc

Nuclear Engineering Program

Cross Section Review

e Microscopic

— Probability per unit area that an incident neutron of given energy
and direction will interact with a specific nucleus

— Units of cm? or barns (10-2*cm?)

e Macroscopic

— Probability per unit length that a specific neutron of known energy
and direction will interact

— Units of 1/cm
e Reaction Rate
— Rate of neutron reactions (per unit volume and time) in a material

— Units of [Reactions/cm3/sec]
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Neutron Phase Space

e The location of any neutron is described uniquely by 7
independent phase variables

— Spatial Location: (X, Y, Z) =r

— Direction of travel: f) = (VX,Vy ,V, )/ || Vv ||
— Energy (velocity): E

— Time: 1

e These phase space variables are the independent variables in the equation
describing the true balance of neutrons in a system

e To simplify the problem we will assume all neutrons have a single energy and
that the same number of neutrons are traveling in each direction
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Neutron Density

e Using these assumptions, the neutron density (distribution)
at any pointin a reactor is

n(F,t)dv
e This gives the number of neutrons that fall within volume
dV at time t.

e Referred to as the Neutron Density.

e Sometimes referred to as scalar neutron density to indicate
it includes neutrons traveling all directions



Stephen R. Tritch

)) University of Pittsburgh Nuclear Engineering Program

Scalar Neutron Flux

e dSisthe total path length generated by all neutrons
in dv about (F)during time interval dt.

e Dividing dS by dt gives
#(F,1)dV =vn(F,t) dv :‘i—f
the rate at which neutrons in dV about

point (7) generate path length at time t.

e #(T,t) is referred to as the scalar neutron flux
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Reaction Rate

R (F,t)=2,(F,t)g(r,t)
e Total Reaction Rate Density

— Rate at which neutrons at positiorf , undergo
any type of reaction.

R, (F,t)=2, (T,t)g(r,t)

e Reaction Rate Density

— Rate at which neutrons at position T, undergo
reaction type x.
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The equation of continuity

e The equation of continuity is the statement of the
fact that since neutrons do not disappear
unaccountably, the time rate of change in the
number of neutrons in volume V must be accounted
for by the known physical processes of production,
absorption, and leakage

| Rate of change of | [ Rate of 1 [ Rate of |1 [ Rate of
number of =| production of |—| absorption of |—| leakage of
| neutrons in V | [ neutronsinV | |neutronsinV | |neutronsinV
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The equation of continuity

e The equation of continuity can be written

on(F t ) o )
J ng; )dvz\_[s(r,t)dv —\'!Za(r,t)¢(r,t)dv —\'[(V.J(r,t)dv

e Because all of the integrals were carried out
over the same arbitrary volume the
integrands must be equal. Thus

8ng, H_ s(r,t) =2, (r,0)¢(r, 1) = V-J(I,1)

10
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The equation of continuity

e Using our definition of scalar flux we can
rewrite the time rate of change term:

109D _ )= 3. (F.0)4(F, 1) = VeI (F 1)
vV Ot

e Unfortunately we still have an equation with
two unknowns, neutron flux and neutron
current!

109 _ (7 1) (F.04(F 1) = VoI (F.1)
v ot —

11
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Diffusion Approximation

e |f the neutrons have an equal probability of
traveling in any direction then it is reasonable
to assume that neutrons will “diffuse” from
regions of high density (flux) to regions of low

density.

o | <9 o2
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Diffusion Approximation

e This diffusion process may be expressed
mathematically by Fick’s Law:

J(7,t)=-D(F,t) Vo(F,t)

— D is an empirical diffusion coefficient

e Fick’s law says that the net direction flow of
neutrons will always be on the opposite direction of
the neutron flux gradient (downhill) with magnitude
(rate) determined by the diffusion coefficient D.

13
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Diffusion Approximation

e Using Fick’s law to relate the neutron current to the neutron flux
gradient is an approximation — the Diffusion Approximation

e Good Approximation:

— In large, highly scattering materials

e Bad Approximation:

— Near leakage boundaries
— Near strong absorbers or sources
— |n avacuum

— When scattering is strongly anisotropic

14
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Neutron Diffusion Equation

1 op(r,t . . . . , ,
— ¢ét ) =s(r,t) -2, (r,t)g(r,t) + V.D(r,t)V(r,t)g(r,1)
e We now have a differential equation in one variable (scalar neutron flux)

e Too bad this equation is too complicated to solve analytically.

e If we can’t solve the full equation, let’s start simplifying until we get
something that we can solve!

15
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One Speed, 1-D, Steady-State Neutron
Diffusion Equation

e Boundary Conditions (4 types)

— 1. Finite Flux Requirement

lim $(x) <
X—>00
. L. X=0 X—0
— 2. Incident Current Condition
—>
‘J(O): So —
 E——
 E——
Using Fick’s Law: — D d¢(X) =S, E

dx |,
xX=0 X=
16
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One Speed, 1-D, Steady-State Neutron
Diffusion Equation

e Boundary Conditions A
—_
— 3. Reflecting Boundary B
—_
J(0)=0
d¢(X) O X=0 x=R
Using Fick’s Law: —
dx |,_,
— 4. Zero Flux (Escape) Condition
#(R)=0
X=0 X=

17
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Diffusion Length

_Dﬂ (x)—Z, #(x)=5s(x)

e Rewrite this equation as

CRPYINEE SV C)
e (X)—? (X)= D

e The variable Lis called the diffusion length and L?is called the diffusion area

L= |= 2= 2

5 2,

— The diffusion length has units of cm and the diffusion area of cm?

18
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Differential Equation Solution

e The differential equation
d’ 1 s(X)
Efb(x)—ﬁ (x)=-=—=

has the following solution

¢(X) = ¢homogeneous (X) + ¢particu|ar (X)

(x)=ce™" +c,e¥"

¢homogeneous

where the homogeneous solution must satisfy the boundary
conditions and the particular solution our source term

19
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Example 1: Semi-Infinite Slab

J(O) - So
3 D

e No particular —
solution in this case — 2

7 S(x)=0

X/ L

d(x)=ce " +c.e

x=0 X—©

e Boundary Conditions

J(0) =S,
lim ¢(x) < oo

20
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Example 1: Semi-Infinite Slab

. Sol
e Finite Flux o
lim (ce ™" +c,e’t)<oo
X—00
C2 — O x=0 X—00
e Incident Current e Flux Solution
d
J(0)=-D ZS(X) =3, ¢(X) _ SOI— e—X/L
d - —x/L D
_D (D(X) — Cle :SO
dx " L o
S,L
c,=—>—
D

21
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Fission Neutron Source

V2, (T,1) ¢(T,t)

e This is referred to as a multiplying source term (opposed to
a fixed source term) because the magnitude of the source
at every point depends on the flux at the point.

e Replacing our fixed-source gives us the diffusion equation in
a multiplying medium

DL p()+2, 9(x) =12, (1) (7.1

22
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The k Eigenvalue

e To ensure we have a solution for any system configuration
we imagine that the number of neutrons emitted per
fission can be changed N |14

e |n this way any system can be made critical by choosing
the appropriate value of k

d? v

D () +2, 4(x) =%, (RO 4(F.1)

23
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e Define material buckling:

e
B °=

" D
e We can then write the one-group reactor

problem a (2
W¢(X)+ B ¢(x)=0

24
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Multiple Solutions

e The subscript n indicates there are many
solutions which solve the one-group reactor

equation, called

a

¢ (x)=c, cos(n—ﬂx)

narmonic modes

e Really, any of the possible solutions are valid

solutions

Z C, cos(

n=1,3,5,.

- j Zc cos((2n 1)7sz

a

25
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Fundamental Mode

As n increase k decreases
V2 V2,
DB’+x, Dz’

2 (2n-1y +2,
Higher order modes become increasingly subcritical (decreasing
neutron population). If we wait long enough only 1st mode
remains, called fundamental mode
V2
kl = = keff

2

k

n

D

a.2

Reactor properties determined by the fundamental mode

+2,

26
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Criticality Condition

e Set k=1 and solve for geometric buckling

1229 5
K = > — DB,"+X, =VZ,
DB, +%,
VX, —2
Bgzz f a:BmZ
D

e |n acritical system the geometric buckling is equal to the
material buckling

— To achieve criticality the system requires compatible
materials and geometric configuration

27
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Fundamental Mode

e We now know the flux and multiplication are described by
the fundamental mode

¢(x)=c, cos(ﬁj

d
but we still need to find €4

e To find a unique value of ¢, we can write it in terms of
the current power level!

28
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Power Calculation
e The power produced in the reactor is

Power in watts/cm?2 Macroscopic fission
Cross section

P=E.Z, [ g(x)dx \

aE.> .c e i
— R 1sin(ﬁj

/A a JT
malz Slab width //
Pr 7TX
CcoS

Energy recoverable from
fission (joules/fission)

29
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General Geometries

e We have solved the one-group reactor

criticality problem for a slab by finding the

geometric buckling and equating to the
material buckling

e Can we do the same thing for other
geometries?

— Yes, in fact it is the exact same process

VX

K = >
DB, +Z%,

30
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Process for General Geometries

e Find geometric buckling

— Solve differential equation for desired geometry OR

— See Table 6.2 in L&B for common geometries

e Find the constant in terms of total power

e Find k by substituting the geometric buckling
equation in

— |If searching for critical dimension then set material
buckling to geometric buckling and solve for the desired
dimension

31
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