

Relevant Reading Assignments

- Chapter 2/3 of "Introduction to Nuclear Engineering," Lamarsh and Baratta, 3rd edition, Prentice-Hall (2001)
- Chapter 2 of "Nuclear Engineering: Theory and Technology of Commercial Nuclear Power," Knief, 2nd edition, American Nuclear Society (1992, reprint by ANS 2008)
- Chapter 2 of "Nuclear Reactor Analysis," Duderstadt and Hamilton, Van Nostrand (1976)
- Module 1 of DOE Fundamentals Handbook, "Nuclear Physics and Reactor Theory," U.S.DOE (1993)Available at:

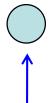
https://www.standards.doe.gov/standards-documents/1000/1019-bhdbk-1993-v1

 Not required but useful and clear is the discussion of nuclear masses and binding energies at the beginning of Chapter 7 of "Concepts of Nuclear Physics" by Bernard L. Cohen, McGraw-Hill, 1971, available in most scientific libraries.

Learning Objectives

- Define microscopic cross sections. Sketch the first three of the four tiers in the cross section hierarchy.
- Define macroscopic cross section and mean free path.
- Define neutron flux and explain the equation for neutron reaction rate.
- Interpret the energy dependencies of neutron-reaction cross sections.

Define microscopic cross sections. Sketch the first three of the four tiers in the cross section hierarchy


Nuclear Reaction Rates

- So far we have covered:
 - Atomic / nuclear structure
 - Nuclear stability
 - Types of radioactive decay / radiation
 - Radiation interactions
 - Nuclear interactions
- Remaining question:
 - How can we predict the expected frequency of interactions in a given radiation field?

Probability of an Interaction – the microscopic cross-section

Top View

Neutron View (Side View)

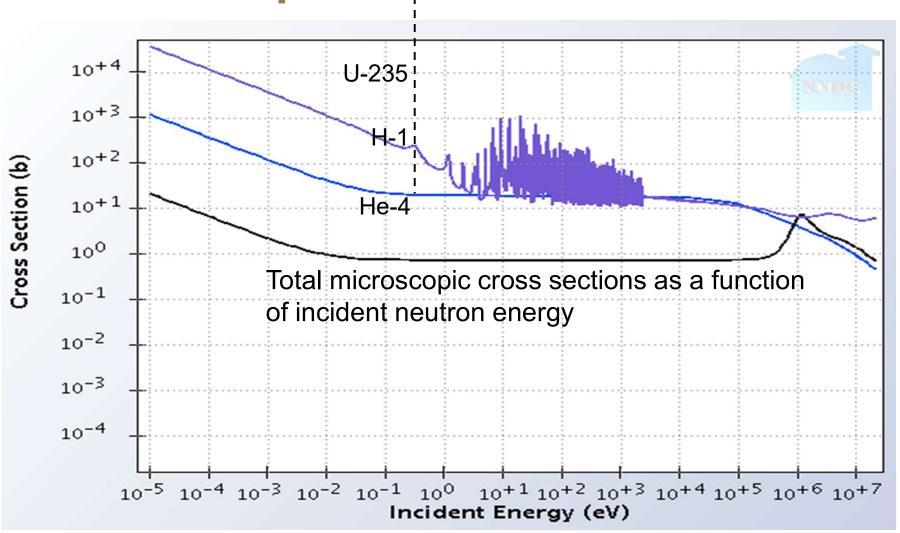
- We start by considering the probability that a neutron will strike a single nucleus
 - Assume that the neutron and nucleus are both solid spheres (or a plate on a barn wall).
 - The neutron "sees" the nucleus as a round target with an effective area, viz., the microscopic cross-section.
 - Microscopic cross-sections are defined with units of area, and are proportional to the probability of the interaction occurring.

- Atom
- Free Neutron

- Microscopic cross section
 - Cross sectional area of nucleus as seen by neutron, denoted by symbol σ
 - Has units of area, given in units of barns
 - 1 barn = 10-24 cm²
 - Proportional to the probability that a neutron will strike the nucleus and undergo a reaction
 - Nuclide dependent

Microscopic Cross Section is not just a simple addition of radii

Microscopic Cross Sections – Calculated vs. Measured


Neutron radius: $r_n = 0.85 \times 10^{-15}$ [meters]

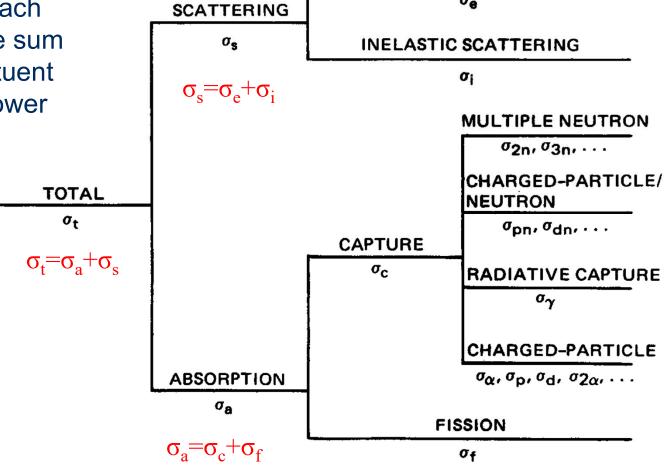
Nuclear radius: $r_a = 1.2 \times 10^{-15} (A)^{1/3}$ [meters] (A is atomic mass)

Guessed Microscopic Cross Section: $\sigma = \pi (r_n + r_a)^2$ [meters²]

Nuclide	Guessed σ	Measured σ
⁴ He	0.132 barns	0.759 barns
¹ H	0.238 barns	20.43 barns
235	2.140 barns	~500 barns

So a solid spheres model is not a good approximation

- The microscopic cross section depends heavily on:
 - The structure / stability of the target nucleus
 - Partially filled neutron shells are more receptive to a neutron interaction than completely filled shells
 - The energy of the neutron
 - Typically low-energy (slow) neutrons are more likely to interact with a nucleus than high-energy (fast) neutrons.
 - The neutron energy dependence is extremely complicated


- So far we have only considered the probability that <u>any</u> type of reaction will occur:
 - This is referred to as the Total Microscopic Cross Section, σ_t
- We can also consider the probability that a <u>specific type</u> of reaction will occur:
 - Microscopic Scattering Cross Section, σ_s
 - Microscopic Absorption Cross Section, σ_a
 - <u>Microscopic Capture</u> (n,γ) Cross Section, σ_c
 - Microscopic Fission Cross Section, σ_f

ELASTIC SCATTERING

oe.

Cross Section Hierarchy

Micros on each level are the sum of all constituent micros on lower levels.

Define macroscopic cross section and mean free path

- Microscopic nuclear cross sections (σ) describe the probability of a particular reaction occurring with a particular nuclide (e.g., U-235, O-16, other) for a neutron of a specific energy. The unit of cross-section is barns (10-24cm²).
- Since bulk behavior in the material medium depends on how many nuclei of interest are present, we consider the product of σ and the number density (number x cm-3) of those nuclei.
- This product, termed the macroscopic cross section, is labeled with the capitalized Greek letter sigma: Σ (with units of cm⁻¹).
- This can be thought of as the inverse of the average distance traveled by a neutron in the material before this reaction occurs.

- So to form Macroscopic cross sections we multiply the probability of interacting with a single nucleus by the number (density) of nuclei in the material.
 - The quantity Σ is called the macroscopic cross section, it has units of 1/cm.

$$\Sigma_t = N\sigma_t$$
 Units: [nuclei/cm³] x [cm²/nucleus]

 These will be used subsequently as we learn to calculate reaction rates.

- The macroscopic cross section gives the probability that a neutron will undergo a reaction per distance travelled (1/cm).
 - Since microscopic cross sections are energy dependent it follows that macroscopic cross sections are as well.
 - Macroscopic cross sections for individual reaction types can be calculated from the corresponding microscopic cross sections.

$$\Sigma_a = N \sigma_a$$

$$\Sigma_s = N \sigma_s$$

$$\Sigma_a = N \ \sigma_a$$
 $\Sigma_s = N \ \sigma_s$ $\Sigma_f = N \ \sigma_f$

Mean Free Path λ

The mean free path is then defined as

$$\lambda = \frac{1}{\Sigma}$$
, having units of [cm]

 If a neutron beam is traveling through a material and exponentially decreasing in intensity with distance, this quantity is the attentuation constant, i.e.,

$$\phi(x) = \phi_0 \exp(-\frac{x}{\lambda})$$

$$N^{j}\sigma_{r}^{j} = \Sigma_{r}^{j}(E)$$

- Single nuclide, single interaction: $N\sigma_r = \Sigma_r$
- Single Nuclide, multiple interactions

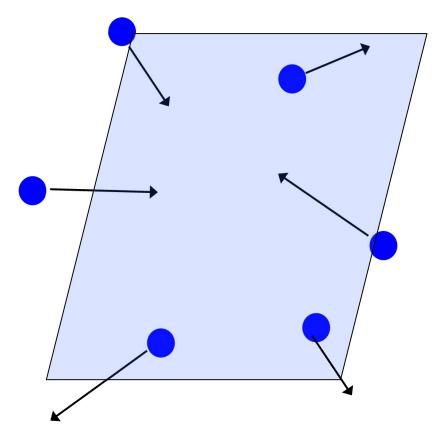
$$\Sigma_{t} = N(\sigma_{c} + \sigma_{f} + \sigma_{s}) = \Sigma_{c} + \Sigma_{f} + \Sigma_{s}$$

$$\Sigma_{t} = \sum_{all \, i} N\sigma_{i} = \sum_{all \, i} \Sigma_{i}$$

Multiple nuclides, multiple interactions

$$\Sigma_{t}^{mix} = \sum_{all \ j} \sum_{all \ r} \Sigma_{r}^{j} = \sum_{all \ j} \sum_{all \ r} N^{j} \sigma_{r}^{j}$$

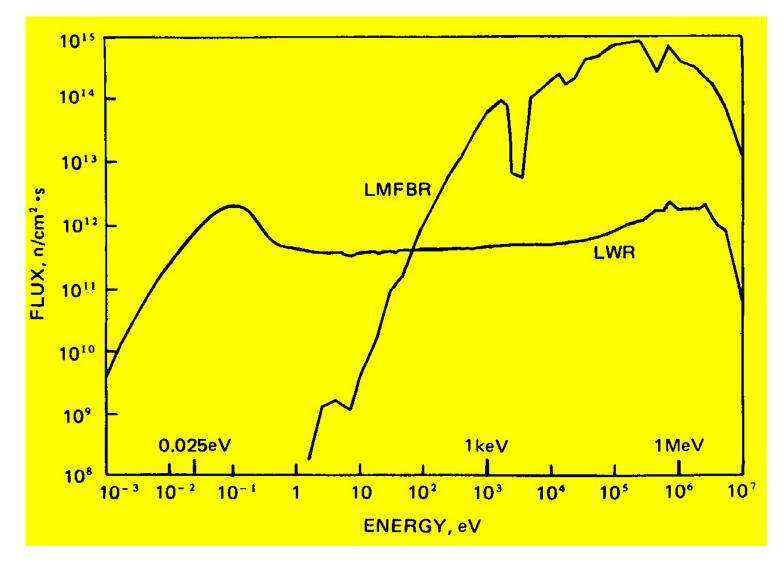
Define neutron flux and explain the equation for neutron reaction rate



Scalar Neutron Flux

- $\phi(r,t)$ represents the *neutron flux* as a function of position and time.
- "Flux" in physics represents generally the number of entities (neutrons, photons, magnetic field lines, raindrops, other...) impinging on a unit area of a system per unit time.
- Neutron flux is calculated as the number density of neutrons multiplied by their speed, i.e., :φ = nv, where n = number of neutrons per cc and v is their speed in cm/sec. Hence the unit of flux is [neutrons / cm² / sec], representing the number of neutrons passing through a given area per unit time.

What is Neutron Flux?



Number of neutrons impinging on a unit area of a system per unit time, travelling in any direction. Units are [1/cm²-sec]

We will now define the reaction rate concept.

Neutron Fluxes

Flux spectrum (energy dependence)

Reaction rates: definition and utility

Reaction Rate definition: a rate of a particular reaction occurring per second, per unit volume, in some physical region of interest.

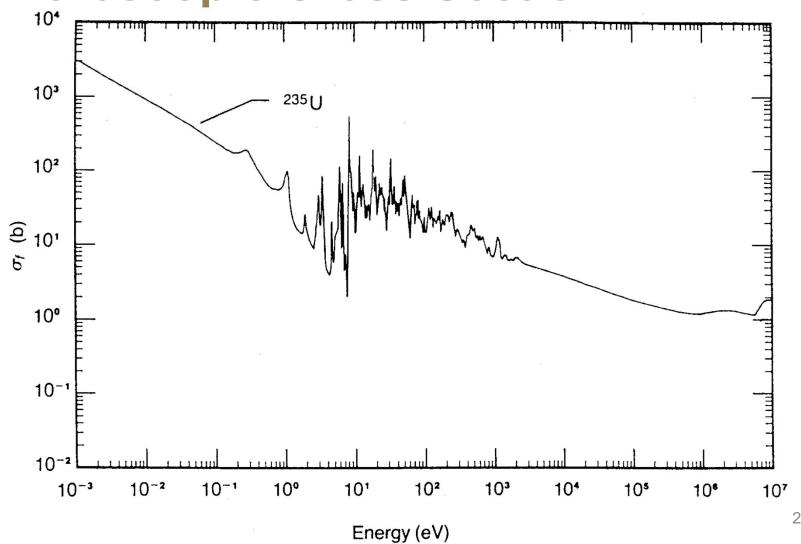
- Of course, the fission rate per unit volume within the fuel pellet gives rise to the heat source in the nuclear reactor core
- Reaction rates utilize microscopic nuclear cross sections (σ), which, in units of area, describe the probability of a particular reaction occurring with a particular nuclide (e.g., U-235, O-16, other) for a neutron of a specific energy. The unit of cross-section is barns (10-²⁴cm²).
- Since bulk behavior in the material medium depends on how many nuclei of interest are present, we consider the product of σ and the number density (number x cm⁻³) of those nuclei. This product, termed the macroscopic cross section, is labeled with the capitalized Greek letter sigma: Σ (with units of cm⁻¹). This can be thought of as the inverse of the average distance traveled by a neutron in the material before this reaction occurs.

Reaction Rates

 The rate of (all) neutron interactions (per unit volume) in a material is given by:

$$R = \Phi \Sigma_t$$

Units: [neutrons/cm²/sec] × [reactions/cm] = [reactions/cm³/sec]

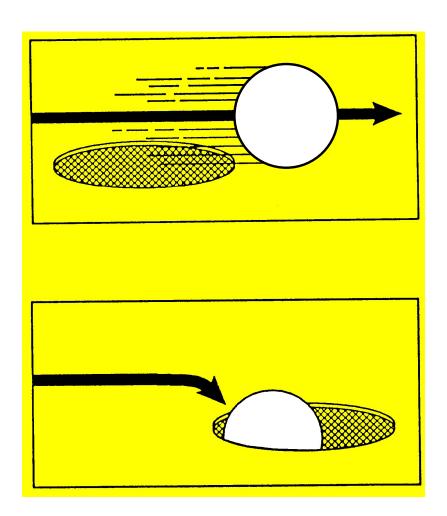

 The rate of any individual reaction can be calculated by substituting the individual reaction macroscopic cross section for the total macroscopic cross section shown above.

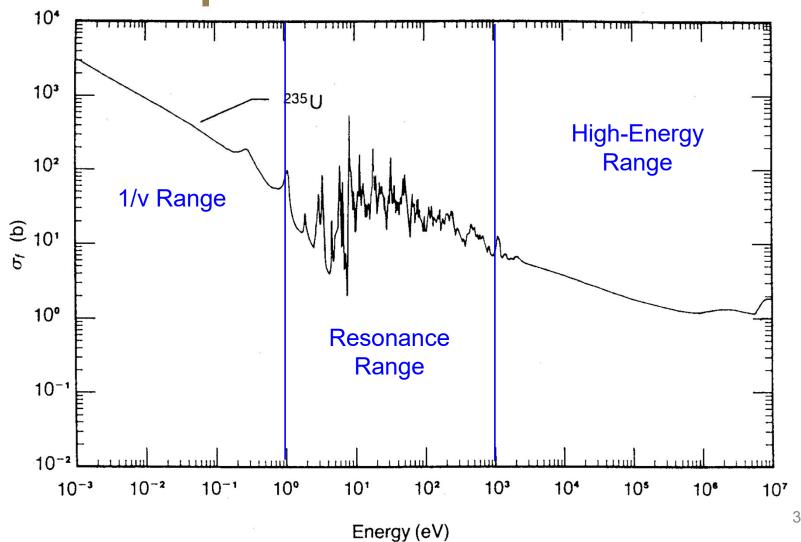
Reaction Rate:

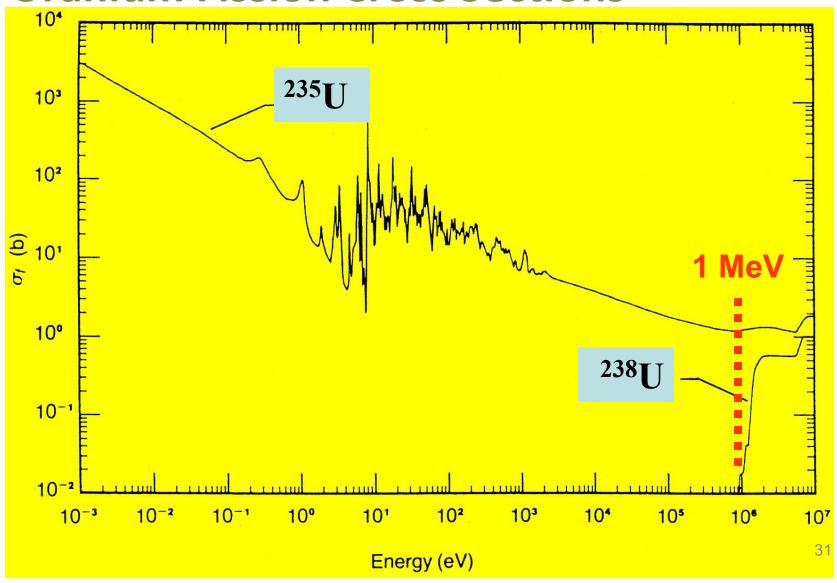
$$R_{x}\left(\vec{r},t\right) = \int_{0}^{\infty} \Sigma_{x}\left(\vec{r},E,t\right) \Phi\left(\vec{r},E,t\right) dE$$

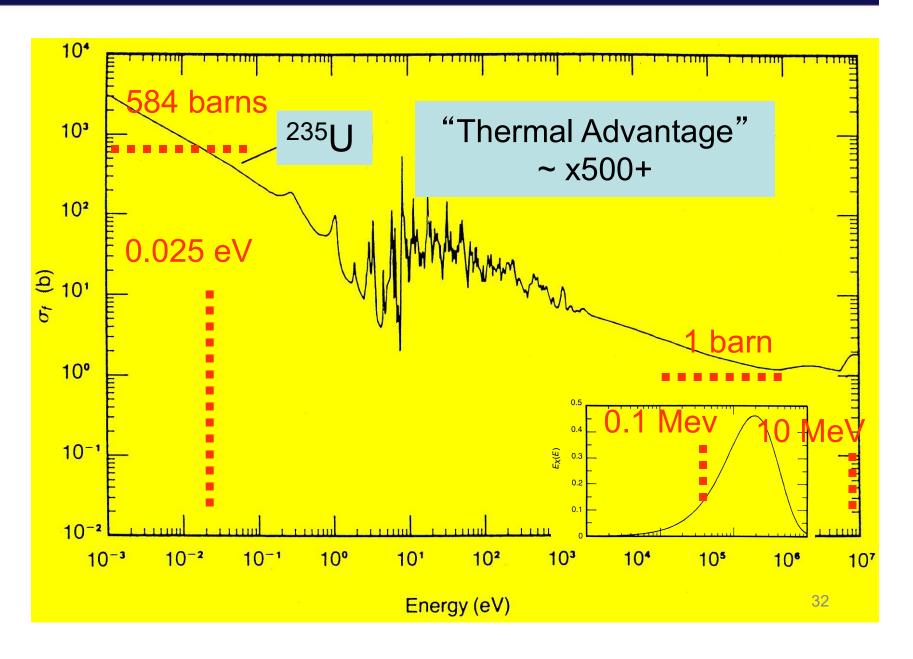
- Reaction Rate Density (Energy Integrated)
 - Rate at which neutrons at position \vec{r} , <u>all</u> energies, undergo a reaction of type x.
 - This reaction rate density is what must be calculated to design a reactor; it governs where the fission energy is deposited.

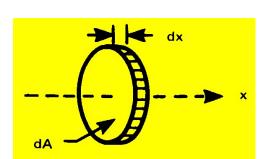
Interpret the energy dependencies of neutron-reaction cross sections


- The energy dependence of microscopic cross sections can be divided into three ranges:
- High Energy (neutron energy > 1 keV)
 - Quantum effects are less important and probability of interaction shows little variation.
- Resonance Range (1 eV < neutron energy < 1 keV)
 - Quantum effects dominate and probability of interaction depends on how closely the neutron energy matches an unfilled nuclear shell in the target nuclide.
- Thermal / 1-over-v Range (neutron energy < 1 eV)
 - Probability of interaction increases as neutron energy (velocity) decreases


$$\sigma(E) = \frac{\sigma_0 V_0}{V} = \sigma_0 \sqrt{\frac{E_0}{E}}$$




Analogy for "1-over-v" Neutron Absorption


Uranium Fission Cross Sections

Interaction Rate

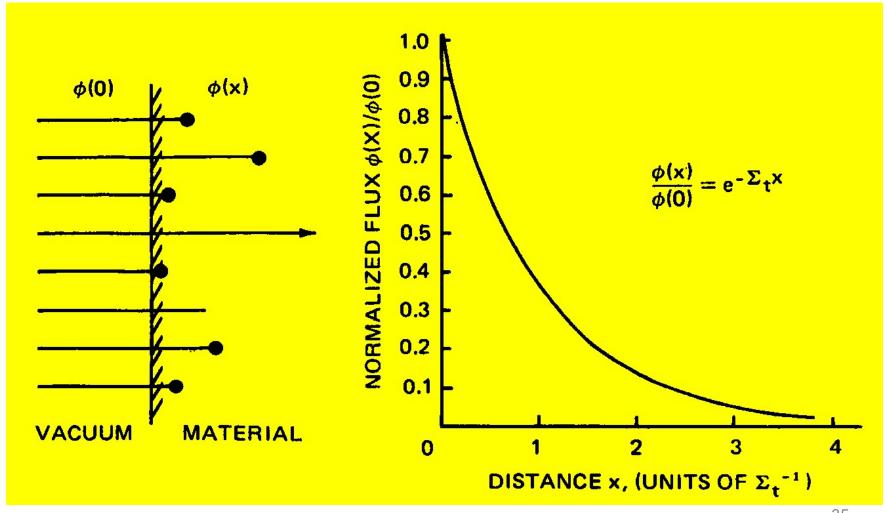
- Reaction Rate
 - Reaction Rate = $(n \vee dA) (N \sigma dx)$
 - Reaction Rate = (n v) (N σ) dV
 - Reaction Rate = ΦΣ dV

- Neutron Flux = Φ (neutrons/cm2-s) = n v
- Macroscopic Cross Section = Σ (cm-1) = N σ
- Reaction Rate = $N \sigma \Phi = \Phi \Sigma$ per Unit Volume

Neutron Beam Attenuation

Neutron Beam Interaction

$$-d\Phi(x) = \Sigma \Phi(x) dx$$


$$\Phi(x) = \Phi(0) e^{-\Sigma x}$$

$$\frac{\Phi(x)}{\Phi_0} = e^{-\Sigma x}$$

Thus macroscopic cross section

$$\Sigma = \frac{-d\Phi(x)}{\Phi(x) dx} = \frac{-d\Phi(x)/\Phi(x)}{dx}$$

Neutron Attenuation

A material has a <u>microscopic</u> neutron cross section of 3.5 barns, and contains and contains 4.2 x 10²³ nuclei/cm³. What is:

The <u>macroscopic</u> cross section?

The mean free path?

A material has a microscopic neutron cross section of 3.5 barns, and contains and contains 4.2 x 10²³ nuclei/cm³. What is:

The <u>macroscopic</u> cross section?

$$\sigma_t = 3.5 barns = 3.5 x 10^{-24} \ cm^2 / nucleus; \ N = 4.2 x 10^{23} nuclei / cm^3$$

Total macroscopic cross section =

$$\Sigma_t = (3.5 \times 10^{-24} \text{ cm}^2 / \text{nucleus})(4.2 \times 10^{23} \text{nuclei} / \text{cm}^3) = 1.47 \text{ cm}^{-1}$$

The mean free path?

$$\lambda = \frac{1}{\Sigma_t} = \frac{1}{1.47 \, cm^{-1}} = 0.68 \, cm$$

A boiling water reactor operates at 1000 psi. At that pressure the density of water and of steam are, respectively, 0.74 g/cm3 and 0.036 g/cm3. The microscopic total cross sections of H and O for thermal energy neutrons are 38 barns and 4.2 barns.

What is the total <u>macroscopic</u> cross section of the water?

What is the total macroscopic cross section of the steam?

If on average, 40% of the volume is occupied by steam, what is the total macroscopic cross section of the steam-water mixture?

A boiling water reactor operates at 1000 psi. At that pressure the density of water and of steam are, respectively, 0.74 g/cm3 and 0.036 g/cm3. The microscopic total cross sections of H and O for thermal energy neutrons are 38 barns and 4.2 barns.

What is the total macroscopic cross section of the water?

$$\begin{split} N_{H} &= 2*\frac{0.74 \left(g \, / \, cm^{3}\right) N_{A} \left(nuclei \, / \, mole\right)}{18.015 g \, / \, mole} = 4.947 \times 10^{22} \left(nuclei \, / \, cm^{3}\right) \\ N_{O} &= 1*\frac{0.74 \left(g \, / \, cm^{3}\right) N_{A} \left(nuclei \, / \, mole\right)}{18.015 g \, / \, mole} = 2.474 \times 10^{22} \left(nuclei \, / \, cm^{3}\right) \\ \Sigma_{t}^{water} &= N_{H} \sigma_{H} + N_{O} \sigma_{O} = 4.947 \times 10^{22} * 38 \times 10^{-24} + 2.474 \times 10^{22} * 4.2 \times 10^{-24} = 1.99 cm^{-1} \end{split}$$

What is the total macroscopic cross section of the steam?

$$\Sigma_{t}^{steam} = 2 * \frac{0.036 * N_{A}}{18.015g} * 38 \times 10^{-24} + 1 * \frac{0.036 * N_{A}}{18.015g} * 4.2 \times 10^{-24} = 0.0966cm^{-1}$$

If on average, 40% of the volume is occupied by steam, what is the total macroscopic cross section of the steam-water mixture?

$$\Sigma_t^{total} = 0.4 (0.0966 cm^{-1}) + 0.6 (1.99 cm^{-1}) = 1.23 cm^{-1}$$

What is the total macroscopic cross section of uranium dioxide (UO2) that has been enriched to 4 at%? Assume

$$\sigma_{t}^{U235} = 607.5b, \sigma_{t}^{U238} = 11.8b, \sigma_{t}^{O} = 3.8b, and \ aUO2 \ density \ of \ 10.5g \ / \ cm^{3}$$

$$\frac{1}{A_{U}} = \frac{1}{100} \left(\frac{4}{235.0439} + \frac{96}{238.0508} \right), \quad A_{U} = 237.929$$

$$A_{UO2} = 237.929 + 2*15.9994 = 269.9278$$

$$w/o(U) = \frac{237.929}{269.9278}*100 = 88.145$$

$$N_{U235} = \frac{0.04*.88145*10.5 \frac{g}{cm^{3}} * 0.6022x10^{24} \frac{atoms}{mol}}{235.0439 \frac{g}{mol}} = 9.485 \times 10^{20} \frac{atoms}{cm^{3}}$$

$$N_{U238} = \frac{0.96*.88145*10.5 \frac{g}{cm^{3}} * 0.6022x10^{24} \frac{atoms}{mol}}{238.0508 \frac{g}{mol}} = 2.248 \times 10^{22} \frac{atoms}{cm^{3}}$$

$$N_{O} = \frac{(1 - .88145) * 10.5 \frac{g}{cm^{3}} * 0.6022x10^{24} \frac{atoms}{mol}}{15.9994 \frac{g}{mol}} = 4.685 \times 10^{22} \frac{atoms}{cm^{3}}$$

$$\Sigma_{t}^{UO2} = N_{U235} \sigma_{U235} + N_{U238} \sigma_{U238} + N_{O} \sigma_{O}$$

$$\Sigma_{t}^{UO2} = 9.485 \times 10^{20} \left(607.5 \times 10^{-24}\right) + 2.248 \times 10^{22} \left(11.8 \times 10^{-24}\right) + 4.685 \times 10^{22} \left(3.8 \times 10^{-24}\right)$$

$$\Sigma_{t}^{UO2} = 1.02cm^{-1}$$

A research reactor has a thermal neutron flux of 10¹³ neutrons/cm²-sec and a volume of 64,000 cm³. If the thermal macroscopic fission cross section is 0.1 cm⁻¹, what is the power of the reactor?

A research reactor has a thermal neutron flux of 10¹³ neutrons/cm²-sec and a volume of 64,000 cm³. If the thermal macroscopic fission cross section is 0.1 cm⁻¹, what is the power of the reactor?

The fission reaction rate is

Fission rate =
$$\Sigma_f (cm^{-1})\phi (neutrons / cm^2 - sec) =$$

= $(0.1cm^{-1})(10^{13} neutrons / cm^2 - sec) = 10^{12} fissions / cm^3 - sec$
so we have $(10^{12} fissions / cm^3 - sec)(64,000cm^3) = 6.4x10^{16} fissions / sec$

Each fission gives 200 MeV of energy and an MeV is 1.6x10-13 watt-sec

$$(6.4x10^{16} fissions / sec)(200 MeV / fission)(1.6x10^{-13} watt - sec / MeV)$$
$$= 2x10^6 watts = 2 MW$$

- What is the power produced by 1 gm of Pu-239 in a light water reactor with a thermal flux of 5 x 10¹³ neutrons/cm²-sec? Consider a microscopic fission cross section for Pu-239 of 750 barns.
 - a) 0.25 kW
 - b) 0.3 kW
 - c) 2.42 kW
 - d) 3.04 kW

• What is the power produced by 1 gm of Pu-239 in a light water reactor with a thermal flux of 5 x 10¹³ neutrons/cm²-sec? Consider a microscopic fission cross section for Pu-239 of 750 barns.

d) 3.04 kW

1 gm of Pu-239 has
$$\frac{(6.023x10^{23} atoms / mole)}{239.05 gms / mole} = 2.52x10^{21} atoms / gm$$

Fission cross section of Pu-239 is 750 barns so in a flux of $5x10^{13}$ neutrons/ cm^2 – sec

there are
$$(2.25x10^{21} atoms) (750x10^{-24} cm^2/atom) (5x10^{13} neutrons/cm^2 - sec) = 9.45x10^{13} fissions/sec$$

Each fission provides 200 MeV/fission or 3.22E-11 watt-sec/fission for

$$\left(9.45 \times 10^{13} \frac{fission}{sec}\right) \left(3.22 \times 10^{-11} \frac{watt - sec}{fission}\right) = 3,040 \frac{watts}{45}$$