--- title: Homework 1 allDay: false startTime: 11:30 endTime: 15:30 date: 2024-09-03 completed: null type: single --- # Preamble Dane Sabo Dane.Sabo@pitt.edu September 3rd, 2024 # Instructions Complete the problems below being sure to show your work. If you need to lookup nuclear data from an external source please reference the source in your solutions. # Problems **1. How many neutrons and protons are there in the nuclei of the following atoms:** | Atom | Protons | Neutrons | | ----------------- | ------- | -------- | | $^7\text{Li}$ | 3 | 4 | | $^{24} \text{Mg}$ | 12 | 12 | | $^{135}\text{Xe}$ | 54 | 81 | | $^{209}\text{Bi}$ | 83 | 126 | | $^{222}\text{Rn}$ | 86 | 136 | **2. The atomic weight of $^{59}\text{Co}$ is 58.93319. How many times heavier is $^{12}\text{C}$? ** $\frac{ ^{59}\text{Co}}{^{12}\text{C}} = \frac{58.93319}{12.00000} = 4.91110 \text{ times larger}$ **3. How many atoms are there in 10g of $^{12}\text{C}$?** $10 \text{g} \times \frac{1 \text{ mol } ^{12}\text{C}}{12 \text{g}} \times \frac{0.6022045 \times 10^{24} \text{ atoms}}{1 \text{ mol } ^{12}\text{C}} = 5.0184 \times 10^{23} \text{ atoms of } ^{12} \text{C}$ **4. A beaker contains 50 g of ordinary water.** *a. How many moles of water are present?* $50 \text{g} \times \frac{1 \text{ mol } H_2O}{18.01528 \text{g}} = 2.77542 \text{ moles of water}$ *b. How many hydrogen atoms?* $2.77542 \text{ moles of water } \times \frac{2 \text{mol} H}{1 \text{mol} H_2O} \times \frac{0.6022045 \times 10^{24} \text{ atoms}}{1 \text{ mol }H} = 3.34274 \times 10^{24} \text{ H atoms}$ *c. How many deuterium atoms?* $3.34274 \times 10^{24} \text{ H atoms} \times \frac{0.0156 ^2H}{1 H} = 5.21468 \times 10^{22} \text{ deuterium atoms}$ **5. Find the mass of an atom of $^{235}\text{U}$** *a. in amu;* [235.043928 amu](https://ciaaw.org/uranium.htm) *b. in grams.* $1 \text{ atom } ^{235}U \times \frac{1 \text{ mol } ^{235}U}{0.6022045 \times 10^{24} \text{ atoms}} \times \frac{235.043928 \text{ g }}{1 \text{ mol } ^{235}U} = 3.90306 \times 10^{-20} \text{ g }$ **6. The complete combustion of 1 kg of bituminous coal releases about $3\times 10^7 \text{J}$ in heat energy. The conversion of 1 g of mass into energy is equivalent to the burning of how much coal?** [The speed of light is 299,792,458 m/s.](https://en.wikipedia.org/wiki/Speed_of_light) $E = mc^2$ $E = 0.001 \text{ kg } \left(299792458 \text{ m/s }\right)^2$ $E = 8.98755 \times 10^{13} \text{ J }$ $\left(8.98755 \times 10^{13} \text{ J } \right) \times \frac{1 \text{ kg }}{3 \times 10^7 \text{ J }} = 2995850 \text{ kg of coal }$ **7. Tritium ($^3\text{H}$) decays by negative beta decay with a half-life of 12.26 years. The atomic weight of $^3\text{H}$ is 3.016.** *a. To what nucleus does $^3\text{H}$ decay?* [Helium-3](https://people.physics.anu.edu.au/~ecs103/chart/) *b. What is the mass in grams of 1 mCi of tritium?* First we need to find the decay constant for tritium: $\lambda = \frac{0.693}{t_{1/2}}$ $\lambda_{^3H} = \frac{0.693 \text{ decays}}{12.26 \text{ years}} \times \frac{1 \text{ year}}{365 \text{ days}} \times \frac{1 \text{ day}}{24 \text{ hours}} \times \frac{1 \text{ hour}}{3600 \text{ seconds}} =\frac{0.693 \text{ decays}}{386631360 \text{ s}}$ $1 \text{ mCi } \times$ **8. Approximately what mass of $^{90}\text{Sr}$ (T-1/2 = 28.8 years) has the same activity as 1g of $^{60}\text{Co}$ (T-1/2 = 5.26 years)?** **9. Using the chart of the nuclides, complete the following reactions. If a daughter nucleus is radioactive, indicate the complete decay chain:**