

Relevant Reading Assignments

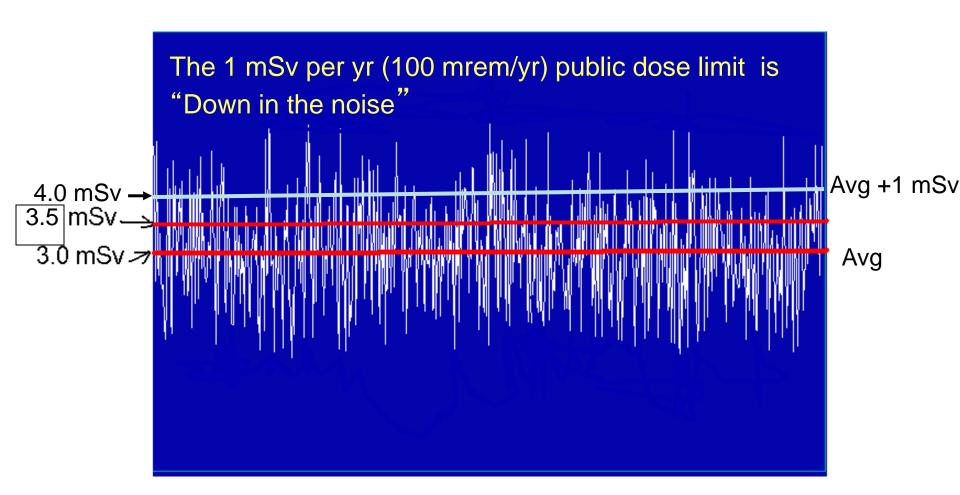
- Chapter 9 of "Introduction to Nuclear Engineering," Lamarsh and Baratta, 3rd edition, Prentice-Hall (2001)
- Chapter 3 of "Nuclear Engineering: Theory and Technology of Commercial Nuclear Power," Knief, 2nd edition, American Nuclear Society (1992, reprint by ANS 2008)

Learning Objectives

Describe current US radiation protection standards

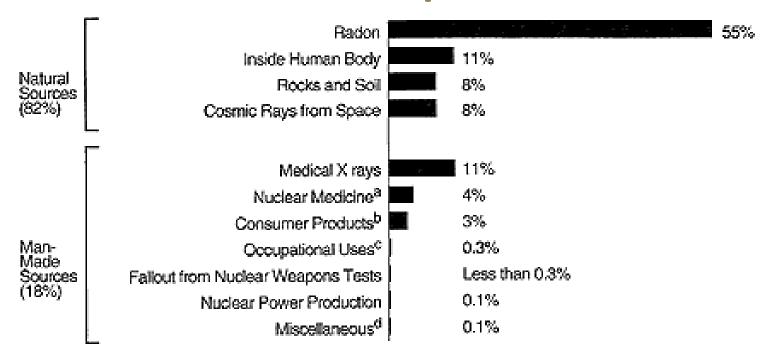
 Explain the three primary and two subordinate dose reduction principles.

Describe current US radiation protection standards


Background Radiation

- Natural background radiation
 - Varies in world with altitude and soil composition.

US Average -- 300 mrem/y + 50 mrem/y

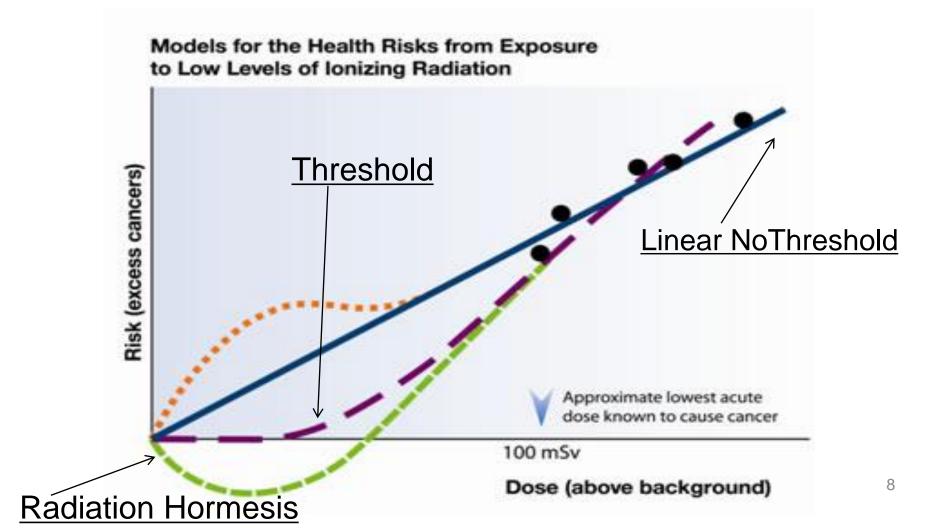

	[ICRP]	
Cosmic	30 mrem/y	0.3 mSv/yr
Terrestrial	30 mrem/y	0.3 mSv/yr
Internal (Food/Water)	40 mrem/y	0.4 mSv/yr
Inhaled (Radon)	200 mrem/y	2.0 mSv/yr
Medical / Etc.	50 mrem/y	0.5 mSv/yr

Variation in Natural Background radiation in US

Location in US

Sources of Radiation Exposure

^a Involves the use of radioactive materials in diagnosing and treating patients with cancer and other diseases.


b Building materials, tobacco, mining and agricultural products, water supplies, etc.

^c Uranium mines, industrial and medical users, etc.

d Department of Energy facilities, smelters, transportation, etc.

Source: National Council on Radiation Protection and Measurements, Report No. 93.
(Total adds up to more than 100% due to rounding off of percentages.)

Linear No Threshold Hypothesis for evaluation of radiation health effects

External Radiation Standards

Universal annual radiation dose limits

	Occupational	Public
Whole body	5 rem	o.1 rem
Lens of the eye	15 rem	5 rem
Other tissues	50 rem	5 rem

- Special situations
 - 25 rem "Lifesaving" (on voluntary basis)
 - 10 rem "Equipment/Property saving"
 - Remember: "no observable effects below 25 rem"

Annual acceptable public dose in US

- Despite the Variation in Natural Background, most locales in the US are below 6 mSv (600 mrem) per year.
- Regulatory value selected is 1 mSv (100 mrem) per year

Explain each of the three primary and the two subordinate dose reduction principles

Dose Reduction

- How do we optimize radiation exposure to get it as low as reasonably achievable?
- Three basic principles
 - Restrict proximity *TIME*
 - Dose = Dose Rate × Time
 - Increase the DISTANCE from the source
 - For example, Point source: "1-over-r-squared" reduction
 - Use SHIELDING material

Dose Reduction and control

- Other subordinate approaches:
 - Allow to **DECAY** away with time
 - Provide CONTAINMENT
 - Isolate contaminated materials & surfaces
 - Containment enclosures
 - Isolate workers
 - Respirator
 - Protective clothing
 - Provide engineered controls
 - Procedures, physical controls
- Also Monitor (personal dosimetry, area monitors), though this dose not prevent dose, merely informs of its accrual