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Learning Objectives

• Estimate radiation dose and dose rate from 
specified alpha, beta, and gamma sources.
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Dose Estimates

• Charged particles (α and β radiations):
– Remember, we are calculating energy deposited per unit mass (of tissue)

• Rp = Dose Rate from Charged Particle
• Q = Activity (decays/unit time)
• E′ = Effective Energy (energy deposited)

– α particles: E′ = Eα

– β particles: E′ ≈ 1/3 Emax (due to antineutrino energy sharing in β-decay)

• λ = Decay Constant
• m = Mass (of Organ or Material)
• Then it’s just about getting the units right!

Rp (t) =
Q(t) ¢ E 

m

Q(t) = Q0e
-lt

Ref: Knief, Eq 3-5
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Example Calculation
• Po-210 poisoning of Alexander Litvinenko (11/1/2006)
• Q = Activity (10 micrograms or ≈50 mCi)
• λ= Decay Constant (0.693/(138 d)=6.25e-8 sec-1)

• E′ = Effective Energy
– α particles: E′ = Eα (5.407MeV x 1.6e-6 ergs/MeV=8.65e-6 ergs)

– m = Mass (say a 2,000 gm liver)

Rp (t) =
50mCi( ) 3.7x107 dps

mCi( ) (5.407 MeV
dis) 1.6x10-6 ergs

MeV( )
2,000gms

Rp (t) =
8ergs / gm - sec( )

100ergs / gm - rad( )
= 0.08 rads / sec     (Plus the times RBE = 20 for  a 's)

= 1.6 Rem / sec

10x10-6 gms

210gms / mole
x 6.023x1023atoms / mole = 2.87x1016 atoms

lN =
0.693

138d( ) 24hr / d( ) 3600 sec/ hr( )
æ

èç
ö

ø÷
2.87x1016 atoms( ) = 1.79x109 dps =

1.79x109 dps

3.7x107 dps
mCi

» 50mCi

How long to get 1,000 Rem? 4
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Dose Estimates
• Photons (γ and X-Ray radiation)

– Attenuation

• μ – Total linear attenuation coefficient (like a total 
cross-section for photons)

– Dose

: the density converts energy per volume 
to per unit mass (i.e., dose), and the QF = 1

• μa – Absorption linear attenuation coefficient

• ρ – Density of target material

Φ(x) = Φ(0) e -µ x

Rg = F(t) E
ma

r
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DOSE ESTIMATES
• GAMMA

– Attenuation
Φ (x) = Φ(0) e -µ x

µ = Linear Attenuation Coefficient

Φ(x) = Φ(0) e - (µ/ρ) (ρ x)

µ/ρ = Mass Attenuation Coefficient [cm2-gm]

Note that “thickness” now becomes areal density, ρx

(effectively the number/unit area you would see looking end on)

– Processes
• Photoelectric
• Compton
• Pair Production
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Mass 
Attenuation
Coefficient
for Lead
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From Knief, Fig. 3-4
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Example Problem 1 (Knief, pg 83)

• Consider gamma energy of 1 MeV and a flux of 108 photons/cm2-sec

• For 1 MeV photons in water (similar to human tissue), ρ=1 gm/cm3 and 
μa=0.03 cm-1

8

Dose rate from Rg = F(t) E
ma

r

Rg =
108 g

cm2 - sec( ) 1 MeV( ) 0.03cm-1( )
1 gm

cm3

x
1.6x10-13 J

MeV
x

1 Gy

1 J
kg

x
1000gm

kg
= 0.48 mGy

sec

OR  0.48 mGy
sec( ) x

100 rad

Gy
x

1 Gy

100 mGy
x

100 mrad

rad
= 48 mrad / sec

With QF=1 for 
gamma radiation

Rg  in Rem = Rg  in Rad x (QF = 1) so the dose  is 48 mrem
sec
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Dose Estimates
• Neutrons

– Fast Neutrons

Σs = Macroscopic scattering cross section

f = Fractional energy transfer per collision (note approximation 
above) 

A = Atomic mass number of atoms in material

– Thermal Neutrons
• Absorption
• Activation / Induced Radiation

9

Rfn (t) =
F(t) E Ss f

r
=

F(t) E Ss

r
2A

(A +1)2 Ref: Knief, Eq 3-9
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Example Problem (Knief pg 83)

Consider dose from a 1 MeV neutron flux of 108 neutrons/cm2-sec

• For 1 MeV neutrons in water (similar to human tissue), ρ=1 gm/cm3 and assume 
Σs =0.1 cm-1
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Fast neutrons react mostly with the hydrogen atoms with A = 1, so 

With QF=10 for fast 
neutrons Rg  in Rem = Rg  in Rad x (QF = 10) so the dose  is 800 mrem

sec

Rfn (t) =
F(t) E Ss f

r
=

F(t) E Ss

r
2A

(A +1)2

Rg =
108 neutrons

cm2 - sec( ) 1 MeV( ) 0.1cm-1( ) 0.5( )

1 gm
cm3

x
1.6x10-13 J

MeV
x

1 Gy

1 J
kg

x
1000gm

kg
= 0.8 mGy

sec

OR  0.8 mGy
sec( ) x

100 rad

Gy
x

1 Gy

100 mGy
x

100 mrad

rad
= 80 mrad / sec

2A

A + 1( )2 = 0.5
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Internal Exposure

• External radiation limits are intended for deeply-
penetrating ionizing photon and neutron radiation.

• Charged particles have a much shorter range and external 
sources of these radiation types are not a health hazard.

– The layer of dead skin on the outside of our bodies provides 
sufficient shielding for alpha and some beta radiations.

• However, if charged particle radiation sources are ingested 
or inhaled the high LET radiation will deposit all of its 
energy in the body.
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Internal Exposure Pathways

• Ingesting or inhaling radioactive nuclides is referred to as 
radiation intake.  In this phase the nuclides remain outside 
of the biological barrier in the GI track, lungs or sinuses.

• Uptake occurs when radionuclides cross the biological 
barrier and enter the body.  Uptake rates are very 
dependent on the elemental properties of the nuclide.

• Once in the body, some elements are rapidly incorporated 
into tissues and organs.  Radioisotopes of these elements 
can be very hard to flush out of the body. 
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Effective Half-Life for isotopes taken 
internally
• Once a radionuclide has crossed the biological boundary, it will 

continue to emit radiation and damage nearby tissue until it is 
removed from the body.

• Two main removal mechanisms:
– Radioactive decay

• Eventually all atoms of the radioisotope will decay away.
– Biological removal

• The body can flush elements out of the body through normal 
excretion processes (sweat, tears, urine, feces).

So λeff = λrad + λbiol; or equivalently:
Half-life: 1/Teff = 1/Trad + 1/Tbiol ; or
Mean lifetime: 1/T1/2

eff = 1/T1/2
rad + 1/T1/2

biol

N t( ) = N0e
-lrte-lbt = N0e

- lr+lb( )t
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Example Problem (Knief Problem 3-16)

• Given for Strontium-90

1

T1/2
eff

=
1

T1/2

+
1

T1/2
biol

=
1

28
+

1

11
= 0.1266 or  T1/2

eff =
1

.1266
= 7.9yrs

Compute the effective half-life of Sr-90 in the human body.

T1/2 = 28yr

T1/2
biol = 11yr

Critical  organ = Bone
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Internal Radiation

• Total radiation dose accumulated over the time that any radionuclide 
remains in the body is referred to as committed dose.

• Treatment for internal dose:
– Limit uptake / promote excretion

• Patients are given supplements to prevent the body from absorbing the 
offending element (e.g. iodine pills to protect thyroid from uptaking
radioactive iodine isotopes) .

• Additional supplements can bind to elements in the body, creating a more 
soluble form that can be flushed away. 

• Effectiveness is highly dependent on the element(s) involved.

– Monitor (internal dosimetry / bioassay)
• Urine Samples
• Lung / Whole body count
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