

Learning Objectives

 Estimate radiation dose and dose rate from specified alpha, beta, and gamma sources.

Dose Estimates

- Charged particles (α and β radiations):
 - Remember, we are calculating energy deposited per unit mass (of tissue)

$$R_{p}(t) = \frac{Q(t) E'}{m}$$

$$Q(t) = Q_{0}e^{-\lambda t}$$

Ref: Knief, Eq 3-5

- R_p = Dose Rate from Charged Particle
- Q = Activity (decays/unit time)
- E' = Effective Energy (energy deposited)
 - α particles: $E' = E_\alpha$
 - β particles: E' ≈ 1/3 E_{max} (due to antineutrino energy sharing in β-decay)
- λ = Decay Constant
- m = Mass (of Organ or Material)
- Then it's just about getting the units right!

Example Calculation

- Po-210 poisoning of Alexander Litvinenko (11/1/2006)
- Q = Activity (10 micrograms or \approx 50 mCi)
- λ = Decay Constant $(0.693/(138 d)=6.25e-8 sec^{-1})$

$$\frac{10x10^{-6} gms}{210 gms / mole} x 6.023x10^{23} atoms / mole = 2.87x10^{16} atoms$$

Alexander Litvinenko at University College

$$\lambda N = \left(\frac{0.693}{(138d)(24hr/d)(3600 \sec/hr)}\right) \left(2.87x10^{16} atoms\right) = 1.79x10^{9} dps = \frac{1.79x10^{9} dps}{3.7x10^{7} dps/mCi} \approx 50mCi$$

- E' = Effective Energy
 - α particles: E' = E_{α} (5.407MeV x 1.6e-6 ergs/MeV=8.65e-6 ergs)
 - m = Mass (say a 2,000 gm liver)

$$R_{p}(t) = \frac{\left(50mCi\right)\left(3.7x10^{7} \frac{dps}{mCi}\right)\left(5.407 \frac{MeV}{dis}\right)\left(1.6x10^{-6} \frac{ergs}{MeV}\right)}{2,000gms}$$

$$R_{p}(t) = \frac{\left(8ergs/gm - \sec\right)}{\left(100ergs/gm - rad\right)} = 0.08 \ rads/\sec \qquad (Plus the times RBE = 20 for \alpha's)$$

$$= 1.6 \ Rem/sec$$

Dose Estimates

- Photons (γ and X-Ray radiation)
 - Attenuation

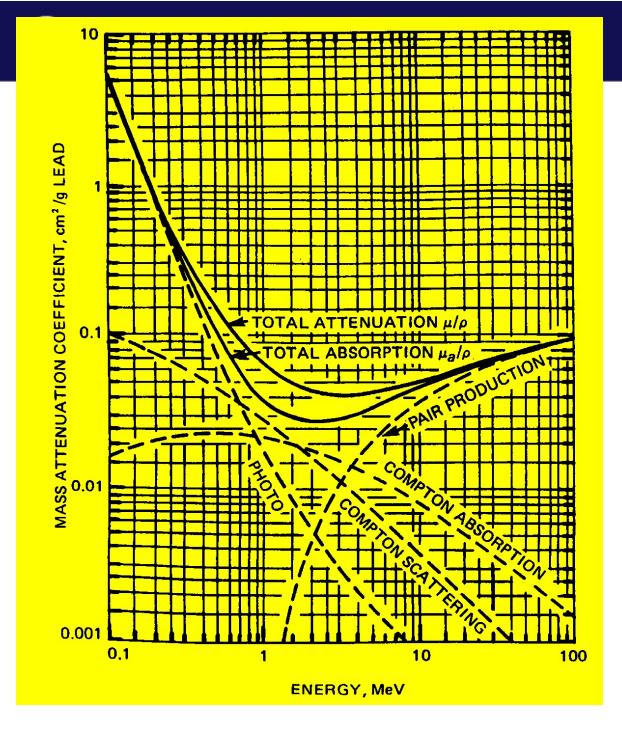
$$\Phi(x) = \Phi(0) e^{-\mu x}$$

• μ – Total linear attenuation coefficient (like a total cross-section for photons)

Dose

$$R_{\gamma} = \Phi(t) E \frac{\mu_a}{\rho}$$
: the density converts energy per volume to per unit mass (i.e., dose), and the QF = 1

- μ_a Absorption linear attenuation coefficient
- ρ Density of target material


DOSE ESTIMATES

- GAMMA
 - Attenuation

$$\Phi (x) = \Phi(0) \ e^{-\mu \, x}$$

$$\mu = \text{Linear Attenuation Coefficient}$$

$$\Phi(x) = \Phi(0) \ e^{-(\mu/\rho) \, (\rho \, x)}$$

$$\mu/\rho = \text{Mass Attenuation Coefficient [cm^2-gm]}$$
 Note that "thickness" now becomes areal density, ρx (effectively the number/unit area you would see looking end on)

- Processes
 - Photoelectric
 - Compton
 - Pair Production

Mass Attenuation Coefficient for Lead

From Knief, Fig. 3-4

Example Problem 1 (Knief, pg 83)

- Consider gamma energy of 1 MeV and a flux of 108 photons/cm²-sec
- For 1 MeV photons in water (similar to human tissue), $\rho=1$ gm/cm³ and $\mu_a = 0.03 \text{ cm}^{-1}$

Dose rate from
$$R_{\gamma} = \Phi(t) E \frac{\mu_a}{\rho}$$

$$R_{\gamma} = \frac{\left(10^{8} \frac{\gamma}{cm^{2} - \sec}\right) (1 \ MeV) \left(0.03cm^{-1}\right)}{1 \ \frac{gm}{cm^{3}}} x \frac{1.6x10^{-13} J}{MeV} x \frac{1 \ Gy}{1 \ \frac{J}{kg}} x \frac{1000gm}{kg} = 0.48 \frac{mGy}{\sec}$$

$$OR \left(0.48 \frac{mGy}{\sec}\right) x \frac{100 \ rad}{Gy} x \frac{1 \ Gy}{100 \ mGy} x \frac{100 \ mrad}{rad} = 48 \ mrad \ / \sec$$

With QF=1 for gamma radiation

 R_{γ} in Rem = R_{γ} in Rad x (QF = 1) so the dose is 48 mrem/sec

Dose Estimates

- Neutrons
 - Fast Neutrons

$$R_{fn}(t) = \frac{\Phi(t) E \Sigma_s f}{\rho} = \frac{\Phi(t) E \Sigma_s}{\rho} \frac{2A}{(A+1)^2}$$

Ref: Knief, Eq 3-9

 Σ_s = Macroscopic scattering cross section

f = Fractional energy transfer per collision (note approximation above)

A = Atomic mass number of atoms in material

- Thermal Neutrons
 - Absorption
 - Activation / Induced Radiation

Example Problem (Knief pg 83)

Consider dose from a 1 MeV neutron flux of 108 neutrons/cm²-sec

For 1 MeV neutrons in water (similar to human tissue), $\rho=1$ gm/cm³ and assume

$$\Sigma_{\rm s} = 0.1 {\rm cm}^{-1}$$

$$R_{fin}(t) = \frac{\Phi(t) E \Sigma_s f}{\rho} = \frac{\Phi(t) E \Sigma_s}{\rho} \frac{2A}{(A+1)^2}$$

 $R_{fin}(t) = \frac{\Phi(t) E \Sigma_s f}{\rho} = \frac{\Phi(t) E \Sigma_s}{\rho} \frac{2A}{(A+1)^2}$ Fast neutrons react mostly with the hydrogen atoms with A = 1, so $\frac{2A}{(A+1)^2} = 0.5$

$$R_{\gamma} = \frac{\left(10^{8} \frac{neutrons}{cm^{2} - \sec}\right)(1 MeV)\left(0.1cm^{-1}\right)(0.5)}{1 \frac{gm}{cm^{3}}} x \frac{1.6x10^{-13}J}{MeV} x \frac{1 Gy}{1 \frac{J}{kg}} x \frac{1000gm}{kg} = 0.8 \frac{mGy}{\sec}$$

$$OR \left(0.8 \frac{mGy}{\text{sec}}\right) x \frac{100 \ rad}{Gy} x \frac{1 \ Gy}{100 \ mGy} x \frac{100 \ mrad}{rad} = 80 \ mrad / \text{sec}$$

With QF=10 for fast neutrons

$$R_{\gamma}$$
 in Rem = R_{γ} in Rad x (QF = 10) so the dose is 800 mrem/sec

Internal Exposure

- External radiation limits are intended for deeplypenetrating ionizing photon and neutron radiation.
- Charged particles have a much shorter range and external sources of these radiation types are not a health hazard.
 - The layer of dead skin on the outside of our bodies provides sufficient shielding for alpha and some beta radiations.
- However, if charged particle radiation sources are ingested or inhaled the high LET radiation will deposit all of its energy in the body.

Internal Exposure Pathways

- Ingesting or inhaling radioactive nuclides is referred to as radiation intake. In this phase the nuclides remain outside of the biological barrier in the GI track, lungs or sinuses.
- **Uptake** occurs when radionuclides cross the biological barrier and enter the body. Uptake rates are very dependent on the elemental properties of the nuclide.
- Once in the body, some elements are rapidly incorporated into tissues and organs. Radioisotopes of these elements can be very hard to flush out of the body.

Effective Half-Life for isotopes taken internally

- Once a radionuclide has crossed the biological boundary, it will continue to emit radiation and damage nearby tissue until it is removed from the body.
- Two main removal mechanisms:
 - Radioactive decay
 - Eventually all atoms of the radioisotope will decay away.
 - Biological removal
 - The body can flush elements out of the body through normal excretion processes (sweat, tears, urine, feces).

So $\lambda^{\text{eff}} = \lambda^{\text{rad}} + \lambda^{\text{biol}}$; or equivalently:

Half-life: $1/T^{eff} = 1/T^{rad} + 1/T^{biol}$; or Mean lifetime: $1/T_{1/2}^{eff} = 1/T_{1/2}^{rad} + 1/T_{1/2}^{biol}$

$$N(t) = N_0 e^{-\lambda rt} e^{-\lambda bt} = N_0 e^{-(\lambda r + \lambda b)t}$$

Example Problem (Knief Problem 3-16)

• Given for Strontium-90
$$T_{1/2}=28yr$$
 $T_{1/2}^{biol}=11yr$ $Critical\ organ=Bone$

Compute the effective half-life of Sr-90 in the human body.

$$\frac{1}{T_{1/2}^{eff}} = \frac{1}{T_{1/2}} + \frac{1}{T_{1/2}^{biol}} = \frac{1}{28} + \frac{1}{11} = 0.1266 \text{ or } T_{1/2}^{eff} = \frac{1}{.1266} = 7.9 \text{ yrs}$$

Internal Radiation

- Total radiation dose accumulated over the time that any radionuclide remains in the body is referred to as committed dose.
- Treatment for internal dose:
 - Limit uptake / promote excretion
 - Patients are given supplements to prevent the body from absorbing the offending element (e.g. iodine pills to protect thyroid from uptaking radioactive iodine isotopes).
 - Additional supplements can bind to elements in the body, creating a more soluble form that can be flushed away.
 - Effectiveness is highly dependent on the element(s) involved.
 - Monitor (internal dosimetry / bioassay)
 - Urine Samples
 - Lung / Whole body count