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Learning Objectives

e Estimate radiation dose and dose rate from
specified alpha, beta, and gamma sources.
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Dose Estimates

e Charged particles (o and [3 radiations):
— Remember, we are calculating energy deposited per unit mass (of tissue)

t)E'
m Ref. Knief, Eq 3-5

(1) =0 "

. R, = Dose Rate from Charged Particle

. Q = Activity (decays/unit time)

J E' = Effective Energy (energy deposited)
— aparticles: E'=E,

— P particles: E' = 1/3 E,,, (due to antineutrino energy sharing in B-decay)

. A = Decay Constant
J m = Mass (of Organ or Material)
e Then it’s just about getting the units right!
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Example Calculation

e P0-210 poisoning of Alexander Litvinenko (11/1/2006)
e Q= Activity (/0 micrograms or =50 mCi) &
« )= Decay Constant (0.693/(138 d)=6.25e-8 sec™) e

1 Oxl 0_6 gms 23 16 Alexazhl..'mme»co at nwcrsny VCOE;T 1
x 6.023x107 atoms / mole = 2.87x10"° atoms Hospital
210gms / mole
( 0.693 1.79x10° dps

~ 50mCi

AN = 2.87x10" atoms) = 1.79x10°dps =
L(138d)(24hr/d)(3600sec/hr)J( x10" atoms) 10 dps

3.7x107 5/
e E’'=Effective Energy
— o particles: E' = E, (5.407MeV x 1.6e-6 ergs/MeV=8.65¢-6 ergs)

Ci

— m = Mass (say a 2,000 gm liver)

j dps 6 ergs
(somcz)(3.7x107 P 41 Ci) (5.4O7Me%is)(l.6x10 6 erg AM/)

2,000gms

R,(t)=

(8ergs / gm — sec)

R ()= =0.08 rads /sec (Plus the times RBE =20 for a's
(1) (100ergs / gm —rad ) ( s )

=1.6 Rem / sec

How long to get 1,000 Rem?
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Dose Estimates
e Photons (y and X-Ray radiation)

— Attenuation

O(x) = P(0) e Hx

* u—Total linear attenuation coefficient (like a total
cross-section for photons)

— Dose

R =®(t) E Ha| : the density converts energy per volume
! L | toperunit mass (i.e., dose), andthe QF =1

* u, — Absorption linear attenuation coefficient

* p — Density of target material
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DOSE ESTIMATES
¢ GAMMA

— Attenuation
D (x) = O(0) e #x
1 = Linear Attenuation Coefficient
D(x) = O(0) e - We)(px)
/p = Mass Attenuation Coefficient [cm?-gm]
Note that “thickness” now becomes areal density, px

(effectively the number/unit area you would see looking end on)

— Processes

e Photoelectric
e Compton
e Pair Production
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Example Problem 1 (knief, pg 83)

e Consider gamma energy of 1 MeV and a flux of 102 photons/cm?-sec

e For 1 MeV photons in water (similar to human tissue), p=1 gm/cm?3 and

u,=0.03 cm?
Dose rate from |R =®(7) E Ha
Yo,
. (108%,%2 _Sec)(l MeV)(O‘(ch_l)x1.6x10‘13J 1Gy 1000gm _ o mGy
! 1 gn/ MeV 1Y/ kg sec
cm’ kg

100 radx 1 Gy xlOO mrad
Gy 100 mGy rad

OR (o 43 MG Sec)x — 48 mrad | sec

With QF=1 for R, in Rem = R, in Rad x (OF = 1) so the dose is 48 m”e%ec
gamma radiation
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Dose Estimates

e Neutrons

— Fast Neutrons
R, (1) - OHEX f_ PMNEX, 24 2
P p_ (4+]

2. = Macroscopic scattering cross section

Ref: Knief, Eq 3-9

f =Fractional energy transfer per collision (note approximation
above)

A = Atomic mass number of atoms in material

— Thermal Neutrons
e Absorption
e Activation / Induced Radiation
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Example Problem (knief pg 83)

Consider dose from a 1 MeV neutron flux of 108 neutrons/cm2-sec

e For 1 MeV neutrons in water (similar to human tissue), p=1 gm/cm3 and assume
2,=0.1cm™ R (1) OHEE, f PHEE, 24
" p p (4+1)
24 ~=0.5
A+1)

(108'4@””’0’% mz_sec)(l MeV)(01en™)(05) 1621077 1Gy 1000gm . mGy
. . x 0.8

4 lgny MeV xl J kg SEC
cm’ kg

G 100 rad 1 Gy 100 mrad
OR (0.8 )x X X
( Sec Gy 100 mGy rad

Fast neutrons react mostly with the hydrogen atoms with A= 1, so (

= 80 mrad / sec

With QF=10 for fast
neutrons R, in Rem =R, in Rad x (QF = 10) so the dose is 800 mr 6% oc

4

10
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Internal Exposure

e External radiation limits are intended for deeply-
penetrating ionizing photon and neutron radiation.

e Charged particles have a much shorter range and external
sources of these radiation types are not a health hazard.

— The layer of dead skin on the outside of our bodies provides
sufficient shielding for alpha and some beta radiations.

e However, if charged particle radiation sources are ingested
or inhaled the high LET radiation will deposit all of its
energy in the body.

11
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Internal Exposure Pathways

e |ngesting or inhaling radioactive nuclides is referred to as
radiation intake. In this phase the nuclides remain outside
of the biological barrier in the Gl track, lungs or sinuses.

e Uptake occurs when radionuclides cross the biological
barrier and enter the body. Uptake rates are very
dependent on the elemental properties of the nuclide.

e Once in the body, some elements are rapidly incorporated
into tissues and organs. Radioisotopes of these elements
can be very hard to flush out of the body.

12
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Effective Half-Life for isotopes taken
internally

e Once aradionuclide has crossed the biological boundary, it will
continue to emit radiation and damage nearby tissue until it is
removed from the body.

e Two main removal mechanisms:

— Radioactive decay
e Eventually all atoms of the radioisotope will decay away.
— Biological removal

e The body can flush elements out of the body through normal
excretion processes (sweat, tears, urine, feces).

So Aeff = Arad + Abiol or equivalently:

Half-life: 1/Teff = 1/Trad + 1/Tvol ; or

Mean lifetime: 1/T,,,2"=1/T, /29 + 1/T, ,,Prol
N(t)=Ne e ™ =N, e

13
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Example Problem (knief Problem 3-16)

e Given for Strontium-90 T, =28yr
Ty =1lyr

Critical organ = Bone

Compute the effective half-life of Sr-90 in the human bodly.

1 1 1 11 1
=—+——=—+—=0.1266 or T =———=T79yrs
T T, Ty 28 11 1266

14
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Internal Radiation

* Total radiation dose accumulated over the time that any radionuclide
remains in the body is referred to as committed dose.

e Treatment for internal dose:

— Limit uptake / promote excretion

e Patients are given supplements to prevent the body from absorbing the
offending element (e.g. iodine pills to protect thyroid from uptaking
radioactive iodine isotopes) .

e Additional supplements can bind to elements in the body, creating a more
soluble form that can be flushed away.

o Effectiveness is highly dependent on the element(s) involved.

— Monitor (internal dosimetry / bioassay)
e Urine Samples
e Lung/Whole body count
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