| Voltage | Count | | ------- | ------- | | 800 | 5499 | | 600 | nothing | | 650 | 4860 | | 675 | 4504 | | 700 | 4803 | | 725 | 5007 | | 750 | 5094 | | 775 | 5326 | | 800 | 5484 | | 825 | 5443 | | 850 | 5715 | | 875 | 5892 | | 900 | 5801 | | 925 | 6009 | | 950 | 6045 | | 975 | 6114 | | 1000 | 6298 | | 1025 | 6392 | | 1050 | 6452 | | 1075 | 6641 | | 1200 | 10089 | Our samples were pretty diluted 1 Minute Count at 925 volts 2cm ~17k 1 minute count at 925 volts 1cm 28740 counts Right half only 1 minute count at 925 volts 1cm R1 15460 counts Both halves 1 minute count at 925 volts 1cm R12 28966 counts Left half only 1 minute count at 925 voltes 1cm R2 15257 counts Question 3.1 we may not really have to do Exercise 3.4 238.9 microseconds between pulses observed calculated was 236.2 Now with the blank disk measurements in script removing both halves background count is 32 ``` danesabo@danesabo-laptop:~/Projects/class_work/NUCE_2113$ python3 quick_maths.py t_d = 2.362e-04 perc deadtime =11.401 t_d = 2.115e-04 perc deadtime =10.317 danesabo@danesabo-laptop:~/Projects/class_work/NUCE_2113$ cat quick_maths.py #rad disk R_1=15460 R_12 = 28966 R_2 = 15257 R_b = 0 X = R_1*R_2 - R_b*R_12 Y = R_1*R_2*(R_12+R_b) - R_b*R_12*(R_1+R_2) Z = Y*(R_1+R_2 - R_12-R_b)/X**2 T_d = X*(1-(1-Z)**(1/2))/Y *60 print(f't_d = {T_d:.3e}') #Exercise 3.1 print(f'perc deadtime ={T_d*R_12/60*100:.3f}') #blank disk R_1=15280 R_12 = 29273 R_2 = 15585 R_b = 0 X = R_1*R_2 - R_b*R_12 Y = R_1*R_2*(R_12+R_b) - R_b*R_12*(R_1+R_2) Z = Y*(R_1+R_2 - R_12-R_b)/X**2 T_d = X*(1-(1-Z)**(1/2))/Y *60 print(f't_d = {T_d:.3e}') #Exercise 3.1 print(f'perc deadtime ={T_d*R_12/60*100:.3f}') ``` - [x] make tasks for what needs done for this #NUCE2113 ⏳ 2025-02-05 📅 2025-02-05 ✅ 2025-02-10