% Demonstration \begin{frame}{Demonstration: SmAHTR autonomous startup provides a rigorous test case} \begin{center} \begin{tikzpicture} \draw[thick, fill=gray!20] (0,0) rectangle (12,7); \node[align=center, text width=10cm] at (6,3.5) { \textbf{FIGURE: SmAHTR Hardware-in-Loop Setup}\\[0.3cm] Top: SmAHTR reactor diagram\\ (liquid-salt cooled, representative SMR)\\[0.3cm] Middle: Hardware-in-loop architecture\\ Simulink Model $\leftrightarrow$ ARCADE $\leftrightarrow$ Emerson Ovation\\[0.3cm] Bottom: Startup sequence state machine\\ Cold $\rightarrow$ Heat $\rightarrow$ Criticality $\rightarrow$ Low Power $\rightarrow$ Full Power\\ Show continuous trajectories within each state }; \end{tikzpicture} \end{center} %SPEAKER NOTES: See comments below % \textbf{Small Modular Advanced High Temperature Reactor (SmAHTR):} - Liquid-salt cooled reactor design - Well-documented startup procedures - Representative of next-generation SMR designs \textbf{Startup Sequence:} Cold → Controlled Heating → Approach Criticality → Low-Power Physics → Full Power Each mode has different control objective (temp control, ramp rate, reactivity, neutron flux, load following) \textbf{Implementation Platform:} - Simulation: High-fidelity Simulink model (thermal-hydraulics + neutron kinetics) - Hardware: Emerson Ovation control system (industry standard) - Integration: ARCADE platform (hardware-in-the-loop) - Validation: Real-time performance on actual control equipment \textbf{Why This Matters:} Multiple coordinated subsystems, strict timing/temperature constraints, complex nonlinear dynamics. This is not a toy problem---it's representative of deployment challenges. % (End of speaker notes) \end{frame}