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Related Reading

• Chapter 5 of Duderstadt and Hamilton

OR

• Sections 5.1-5.7 Lamarsh and Baratta

• Sections 6.1-6.4 Lamarsh and Baratta
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Learning Objectives

• Define the scalar neutron flux and net neutron 
current and provide a physical interpretation of 
each quantity

• Write the mathematical conservation 
relationship describing the “exact” neutron 
balance (continuity equation) in non-
multiplying systems
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Define the scalar neutron flux and net 
neutron current and provide a physical 

interpretation of each quantity
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Reaction Rates

• Reaction rates are written in terms of macroscopic cross sections 
and neutron flux

– Flux is rate at which neutrons pass through a spatial position per 
unit time 

– Units: [neutrons/cm2/ sec]

• Reaction rate

• Ultimately reaction rate determines power distribution in fuel

tR = 
2 3

neutrons reactions reactions

cm sec cm cm sec
 =

 
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Cross Section Review

• Microscopic
– Probability per unit area that an incident neutron of given energy 

and direction will interact with a specific nucleus

– Units of cm2  or barns (10-24 cm2)

• Macroscopic
– Probability per unit length that a specific neutron of known energy 

and direction will interact

– Units of 1/cm

• Reaction Rate
– Rate of neutron reactions (per unit volume and time) in a material

– Units of [Reactions/cm3/sec]
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Neutron Phase Space

• The location of any neutron is described uniquely by 7 
independent phase variables

– Spatial Location:

– Direction of travel:

– Energy (velocity): 

– Time: 

• These phase space variables are the independent variables in the equation 
describing the true balance of neutrons in a system

• To simplify the problem we will assume all neutrons have a single energy and 
that the same number of neutrons are traveling in each direction
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Neutron Density

• Using these assumptions, the neutron density (distribution) 
at any point in a reactor is

• This gives the number of neutrons that fall within volume 
dV at time t.

• Referred to as the Neutron Density.

• Sometimes referred to as scalar neutron density to indicate 
it includes neutrons traveling all directions
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Neutron Flux

• Neutron Velocity:                     [length/time]

• Velocity × Time = Distance Traveled
v × dt = ds

• ds is the distance traveled by one neutron in dt.

• dS is the total distance that neutrons in 
about        travel during time dt. 
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v 2 nE m=
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Neutrons at t = 0Neutrons at t = dt

Total distance traveled by all neutrons during dt

= Total path length generated by all neutrons during dt
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Scalar Neutron Flux

• dS is the total path length generated by all neutrons 
in       about       during time interval dt.

• Dividing dS by dt gives 

the rate at which neutrons in        about
point       generate path length at time t.

• is referred to as the scalar neutron flux
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( ) ( ), v ,
dS
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Reaction Rate

• Total Reaction Rate Density

– Rate at which neutrons at position   , undergo 
any type of reaction.
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r


( ) ( ) ( ), , ,ttR r t r t r t= 

( ) ( ) ( ), , ,x xR r t r t r t= 

• Reaction Rate Density

– Rate at which neutrons at position   , undergo 
reaction type x.

r
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Write the mathematical conservation 
relationship describing the “exact” 

neutron balance (continuity equation) 
in non-multiplying systems
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The equation of continuity

• The equation of continuity is the statement of the 
fact that since neutrons do not disappear 
unaccountably, the time rate of change in the 
number of neutrons in volume V must be accounted 
for by the known physical processes of production, 
absorption, and leakage 
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Rate of change of Rate of Rate of Rate of

number of production of absorption of leakage of

neutrons in V neutrons in V neutrons in V neutrons in V
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Rate of change of number of neutrons

• If              is the density f neutrons at any 
point and time in V the total number of 
neutrons in V is 
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,( )n r t
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• The rate of change of the number of 
neutrons in volume V is then
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Production rate of neutrons

• In a reactor neutrons are generally produced through 
fission. To simplify things are first we imagine that we 
have a well-defined neutron source emitting neutrons in 
our problem,              , at a rate s neutrons per cc per s at 
point r.

• This is referred to as a non-multiplying or fixed-source 
problem.

• The rate at which neutrons are produced by this source 
is 
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Absorption rate of neutrons

• The rate at which neutrons are lost to 
absorption (per cc per second) is equal to the 
neutron absorption rate, which we know can 
be written

• The rate at which neutrons are absorbed in the 
volume V is then
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Leakage rate of neutrons

• Imagine we knew the neutron flux in individual directions 
and used the symbol j to describe the flux in each 
direction in vector form. j is called the neutron current
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( )1̂j

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
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( )4̂j




• Describing the leakage rate of neutrons requires the 
introduction of an additional concept called the neutron 
current
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Neutron Current
• Many of the vectors cancel each other out, 

leaving us with a vector that represents the 
net direction and rate of neutron flow 
through    . 
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Neutron Current

• Neutron Current Density

– A vector pointing in the direction of net neutron flow, whose 
magnitude gives the net rate at which neutrons are passing 
through point    at time t.

• If J is the neutron current density vector on the surface 
of V and n is a unit normal pointing outward from the 
surface then

• is the number of neutrons passing outward through the 
surface  per square cm per second.
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Leakage rate of neutrons

• The total rate at which neutrons are lost due to 
leakage is the sum of the leakages at each point 
on the surface (integral over surface area)
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• Using the divergence theorem this can also be 
written as a volume integral
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The equation of continuity

• The equation of continuity can be written

• Because all of the integrals were carried out 
over the same arbitrary volume the 
integrands must be equal. Thus
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The equation of continuity

• Using our definition of scalar flux we can 
rewrite the time rate of change term:

• Unfortunately we still have an equation with 
two unknowns, neutron flux and neutron 
current!
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