\section*{Problem 5} \subsection*{Part A} \subsubsection*{Solution} The xenon-135 transient for the given power history is solved using the coupled differential equations for I-135 and Xe-135: \[\frac{dI}{dt} = -\lambda_I I + \rho \gamma_I P_0\] \[\frac{dX}{dt} = -\lambda_{Xe} X - \rho R^{Max} X + \lambda_I I + \rho \gamma_{Xe} P_0\] where $\rho$ is the normalized power (1.0 = 100\% power). \textbf{Power History:} \begin{itemize} \item 0-5 hours: 100\% power \item 5-15 hours: Shutdown \item 15-50 hours: 100\% power \item 50-80 hours: 40\% power \item 80-100 hours: Shutdown \item 100-150 hours: 100\% power \end{itemize} \textbf{Key features of the xenon transient:} \begin{enumerate} \item \textbf{Initial equilibrium (0-5 hours):} At 100\% power, xenon reactivity = -2900 pcm \item \textbf{First shutdown (5-15 hours):} \begin{itemize} \item Xenon burnout stops immediately (no neutron flux) \item I-135 continues to decay into Xe-135 \item Xenon concentration rises, reaching a peak around 8-9 hours after shutdown \item Most negative xenon reactivity occurs \end{itemize} \item \textbf{Return to full power (t = 15 hours):} \begin{itemize} \item Xenon burnout resumes at full rate \item System returns to equilibrium at 100\% power \item Xenon reactivity returns to -2900 pcm \end{itemize} \item \textbf{Power reduction to 40\% (t = 50 hours):} \begin{itemize} \item Reduced burnout rate (40\% of full power) \item Xenon concentration increases \item System approaches new equilibrium at 40\% power \item Equilibrium xenon significantly higher at lower power \end{itemize} \item \textbf{Second shutdown (80-100 hours):} \begin{itemize} \item Similar xenon peak behavior to first shutdown \item Starting from 40\% power equilibrium \item Peak less pronounced due to lower initial I-135 inventory \end{itemize} \item \textbf{Return to full power (t = 100 hours):} \begin{itemize} \item Final return to 100\% power operation \item System approaches equilibrium xenon level \item Xenon reactivity returns to -2900 pcm \end{itemize} \end{enumerate} The xenon transient is shown in the figure below (computed using scipy.integrate.odeint): \begin{center} \includegraphics[width=0.95\textwidth]{../python/problem5_xenon_transient.png} \end{center} \subsection*{Part B} \subsubsection*{Python Code} \begin{lstlisting}[language=Python, basicstyle=\ttfamily\small, keywordstyle=\color{blue}, commentstyle=\color{gray}, stringstyle=\color{red}, showstringspaces=false, numbers=left, numberstyle=\tiny, frame=single, breaklines=true] from scipy.integrate import odeint # Define ODE system def xenon_ode(y, t, power_func): I, X = y t_hours = t / 3600 rho = power_func(t_hours) dI_dt = -lambda_I * I + rho * gamma_I * P0 dX_dt = -lambda_Xe * X - rho * R_max * X + lambda_I * I + rho * gamma_Xe * P0 return [dI_dt, dX_dt] # Initial conditions at full power equilibrium I0 = gamma_I * P0 / lambda_I X0 = abs(Xe_eq_reactivity) / K # Solve ODE over time period t_hours = np.linspace(0, 150, 2000) t_seconds = t_hours * 3600 solution = odeint(xenon_ode, [I0, X0], t_seconds, args=(get_power,)) # Find peak after first shutdown (5-15 hours) X_transient = solution[:, 1] Xe_reactivity = -K * X_transient mask = (t_hours >= 5) & (t_hours <= 15) peak_idx = np.argmin(Xe_reactivity[mask]) \end{lstlisting} \subsubsection*{Solution} After the first shutdown at t = 5 hours (shutdown period: 5-15 hours), xenon-135 concentration increases due to: \begin{enumerate} \item Continued decay of I-135 inventory into Xe-135 \item Elimination of xenon burnout (no neutron flux) \end{enumerate} The peak occurs when the production rate from I-135 decay equals the Xe-135 decay rate. This typically happens 8-12 hours after shutdown from full power operation. \textbf{Given parameters:} \begin{itemize} \item $\gamma_I = 0.057$ (I-135 fission yield) \item $\gamma_{Xe} = 0.003$ (Xe-135 fission yield) \item $\lambda_I = 2.87 \times 10^{-5}$ sec$^{-1}$ (I-135 decay, $t_{1/2}$ = 6.7 hr) \item $\lambda_{Xe} = 2.09 \times 10^{-5}$ sec$^{-1}$ (Xe-135 decay, $t_{1/2}$ = 9.2 hr) \item $R^{Max} = 7.34 \times 10^{-5}$ sec$^{-1}$ (full power burnout) \item $K = 4.56$ pcm$\cdot$sec$^{-1}$ \item Initial Xe reactivity = -2900 pcm (at 100\% power) \end{itemize} \textbf{Initial equilibrium concentrations (100\% power):} At equilibrium with $\rho = 1.0$: \[I_{eq} = \frac{\gamma_I P_0}{\lambda_I} = 1985.12 \text{ [arb. units]}\] \[X_{eq} = \frac{|\text{Xe reactivity}|}{K} = \frac{2900}{4.56} = 635.96 \text{ [arb. units]}\] \textbf{Results from numerical integration:} \[\boxed{\text{Time of peak: } t = 13.36 \text{ hours}}\] \[\boxed{\text{Time after shutdown: } \Delta t = 8.36 \text{ hours}}\] \[\boxed{\text{Peak xenon reactivity: } -5261 \text{ pcm}}\] \textbf{Interpretation:} \begin{itemize} \item The xenon reactivity becomes 2361 pcm more negative than equilibrium \item Peak occurs approximately 8.4 hours after shutdown \item This represents a significant reactivity penalty that must be overcome to restart \item If reactivity worth is insufficient, the reactor cannot be restarted until xenon decays \item At t = 15 hours, when power returns to 100\%, xenon has already started to decay from peak \end{itemize} \textbf{Physical insight:} The time to peak can be estimated analytically. After shutdown, I-135 decays with time constant $1/\lambda_I \approx 10$ hours, while Xe-135 decays with $1/\lambda_{Xe} \approx 13$ hours. The peak occurs when: \[\frac{dX}{dt} = \lambda_I I(t) - \lambda_{Xe} X(t) = 0\] This typically occurs at $t \approx 8-12$ hours after shutdown for thermal reactors, consistent with our computed value of 8.36 hours. The reactor restarts at t = 15 hours, which is about 1.6 hours after the xenon peak, when xenon has already begun to decay.