NUCE 2101: Exam 2

PI: Dane A. Sabo
dane.sabo @pitt.edu

Sunday 9" November, 2025

20

21

22

23

24

25

26

27

28

29

Problem 2

Cross-Section Data

Two-group cross-section data stored in Python dictionary:

import numpy as np

cross_sections = {
*fast’: |
’D’: 1.4, # Diffusion constant [cm]
’Sigma_a’: 0.010, # Absorption [cm™-1]
’Sigma_s’: 0.050, # Scattering from fast to
thermal [cm”™-1]
’nu_Sigma_f’: 0.000, # nuxSigma_f [cm~-1]
’chi’: 1, # Fission spectrum
’v’: 1.8e7, # Average group velocity [cm/
sec]
},
>thermal’: A
’D’: 0.35, # Diffusion constant [cm]
’Sigma_a’: 0.080, # Absorption [cm™-1]
’Sigma_s’: 0.0, # Scattering from thermal to
fast [cm™-1]
’nu_Sigma_f’: 0.125, # nuxSigma_f [cm~™-1]
’chi’: O, # Fission spectrum
‘v’ 2.2eb, # Average group velocity [cm/
sec]
}
}
Extract variables for easy access
D_fast = cross_sections[’fast’][’D’]
D_thermal = cross_sections[’thermal’][’D’]
Sigma_a_fast = cross_sections[’fast’][’Sigma_a’]
Sigma_a_thermal = cross_sections[’thermal’][’Sigma_a’]
Sigma_s_fast = cross_sections[’fast’][’Sigma_s’]
nu_Sigma_f_fast = cross_sections[’fast’][’nu_Sigma_f’]
nu_Sigma_f_thermal = cross_sections[’thermal’][’nu_Sigma_f£f’]
Part A
Python Code
Four-Factor Formula: k_inf = epsilon * p * f * eta
Fast fission factor: epsilon = 1 (no fast fissions)

epsilon = 1.0

Resonance escape probability

p = Sigma_s_fast / (Sigma_a_fast + Sigma_s_fast)

Thermal utilization factor: f = 1 (single-region)
f =1.0

Reproduction factor
eta = nu_Sigma_f_thermal / Sigma_a_thermal

Four-Factor Formula
k_inf = epsilon * p * f * eta

print (f"k_inf = epsilon * p * f * eta = {k_inf:.4f}")

Solution

The infinite multiplication factor is calculated using the Four-Factor Formula:

ke=€-p-fom

where:

¢ =fast fission factor (neutrons from fast fissions per thermal fission)

* p =resonance escape probability (fraction of fast neutrons reaching thermal energies)
* f = thermal utilization factor (fraction of thermal neutrons absorbed in fuel)

* 1M = reproduction factor (neutrons produced per thermal neutron absorbed in fuel)

Given cross-sections:

* VE¢ rasr = 0.000 cm~! (no fast fissions)

* VEf thermar = 0.125 cm™!

* X4 fase =0.010 cm™!

* z:a,z‘hermal =0.080 cm™!

e X5 fast = 0.050 cm™! (scattering from fast to thermal)

Calculating each factor:
1. Fast fission factor:

€ =1.0000 (no fast fissions since VX 450 = 0)

2. Resonance escape probability:

Yfat _ 0.050 0.050
Yo fast T Zs.fase 0.010+0.050 0.060

p= — 0.8333

3. Thermal utilization factor:

f =1.0000 (single-region, homogeneous medium)

4. Reproduction factor:

_ sz,thermal . 0.125

= =1.5625
Za,thermal 0.080

Final calculation:

ke =€-p-f-n =1.0000 x 0.8333 x 1.0000 x 1.5625 = 1.3021

ke = 1.302

Part B
Python Code

Calculate diffusion lengths
L"2_fast = D_fast / Sigma_total_fast

where Sigma_total_fast = Sigma_a_fast + Sigma_s_fast (removal from
fast group)
Sigma_total_fast = Sigma_a_fast + Sigma_s_fast

L_squared_fast = D_fast / Sigma_total_fast

L"2_th = D_th / Sigma_a_th
L_squared_th = D_thermal / Sigma_a_thermal

L_fast = np.sqrt(L_squared_fast)
L_thermal = np.sqrt(L_squared_th)

print (f"L_fast = {L_fast:.3f} cm")
print (f"L_thermal = {L_thermal:.3f} cm")

Solution

The diffusion lengths for each group are calculated as:

L = D

Z:removal

Fast Group:
The removal cross-section includes both absorption and scattering out:

Z:removal,fast = Za,fast + z:s,fast =0.010+0.050 = 0.060 Cl‘n_1

Dfasl . 14

= =23.333 cm?
removal, fast 0.060

2
Lfast = y

Loy = V23.333 =4.830 cm
Thermal Group:

L= Y T N

For the thermal group (lowest energy group), only absorption removes neutrons:

L2 . Dihermal o 0.35

2
thermal = Z'a.,thermal B 0.080 = 4375 em

Linermal = V4375 = 2.092 cm

Lyasy =4.830cm, Lipermar = 2.092 cm

Part C
Solution

For a rectangular solid geometry (box) with dimensions L,, Ly, and L,, where the neutron flux goes
to zero at the edges (bare reactor boundary condition), the geometric buckling is:

P () (5) +(2)

This expression comes from solving the neutron diffusion equation with boundary conditions
¢ = 0 at the reactor boundaries. The solution for the fundamental mode has the form:

. X . Ty . Tz
=A — — =
o (x,y,z) Sln(Lx)sm(Ly)sm(LZ)

The geometric buckling is the eigenvalue associated with this spatial mode, representing the
curvature of the neutron flux distribution. Each term corresponds to the buckling in one spatial
dimension:

2
« B2= <Ll> - buckling in x-direction

‘X

2
. B% = <£> - buckling in y-direction

2
s B2= <LEZ> - buckling in z-direction

The total geometric buckling is the sum of the directional components.
Note: The derivation of this formula from the diffusion equation was completed in Exam 1.
The proof is left to that work.

Part D
Python Code

import sympy as sm

Given dimensions
L_x_val = 150 # cm (width)
L_y_val = 200 # cm (length)

Define L_z (height) as unknown
L_z_sym = sm.Symbol(’L_z’, positive=True)

Buckling with unknown height
B_sq = (sm.pi / L_x_val)*x*2 + (sm.pi / L_y_val)*x*2 + (sm.pi /
L_z_sym) *%2

Criticality equation: k_inf = (L"2_fast * B"2 + 1)(L"2_thermal * B
"2 0+ 1)

criticality_eq = (L_squared_fast * B_sq + 1) * (L_squared_th * B_sq
+ 1) - k_inf

Solve for L_z

L_z_solutions = sm.solve(criticality_eq, L_z_sym)

L_z_critical = float([sol for sol in L_z_solutions if sol.is_real
and sol > 0][0])

print (f"Critical height L_z = {L_z_critical:.2f} cm")

Solution

For a trough with width L, = 150 ¢cm and length L, = 200 cm, we need to find the critical height
L, where k.pr = 1.

Criticality condition using two-group theory:

At criticality, the effective multiplication factor equals unity:

k _ kOO
N, B (1

fast thermal

B2+1)

Rearranging:
(L}asth + 1)(L12hermalB2 + 1) = koo

The geometric buckling for the rectangular trough is:

Known values:

* koo =1.3021

* L3, =23.333 cm?
e L% =4375cm?
e [,=150cm

e L, =200 cm
Calculation:

Substituting the buckling expression:
N EAE AL ’
~\150 200 L,
2

B2 =4386x10*4+2.467 x 10~* + %

Z

Substituting into the criticality equation:

2 2
(23.333 <6.853 x 1074 + %) + 1) <4.375 (6.853 x 1074 + %) + 1) = 1.3021

Z Z

Solving this equation numerically (or symbolically with SymPy) yields:

|L;=31.72 cm|

Verification:

e B2=10.010496 cm 2
¢ kepr = 1.000000 v

The trough would become critical at a height of approximately 31.7 cm.
Part E
Python Code

Prompt criticality
BETA = 640e-5 # Delayed neutron fraction

Prompt critical k_eff = 1/(1-beta)
k_eff_prompt = 1 / (1 - BETA)

Solve for height at prompt criticality

L_z_prompt_sym = sm.Symbol(’L_z_prompt’, positive=True)

B_sq_prompt = (sm.pi / L_x_val)**2 + (sm.pi / L_y_val)**2 + (sm.pi /
L_z_prompt_sym) **2

prompt_crit_eq = (L_squared_fast * B_sq_prompt + 1) * \
(L_squared_th * B_sq_prompt + 1) - k_inf /
k_eff_prompt

L_z_prompt_solutions = sm.solve(prompt_crit_eq, L_z_prompt_sym)
L_z_prompt = float([sol for sol in L_z_prompt_solutions

if sol.is_real and sol > 0][0])

print (f"Prompt critical height L_z = {L_z_prompt:.2f} cm")

Solution

Prompt criticality occurs when the reactor can sustain a chain reaction on prompt neutrons alone,
without relying on delayed neutrons. This happens when:

kepy = ﬁ
where f3 is the delayed neutron fraction.
Given:
* B =640 x 107> = 0.00640
Prompt critical condition:
1 1

ke rom — = = 1.00644
F1prompt = 1770.00640 — 0.99360

Using the same two-group criticality equation from Part D, but now solving for the height
where k. rr = 1.00644:

koo
= 1.00644
(szcasth + 1)(L12hermalB2 + 1)
Rearranging:
koo 1.3021

2 2 2 2
(LfastB + 1)(LthermalB + 1) =

= =1.2938
ket prompr 1.00644

2
With B> = (%)2 + (%)2 + (%) , solving numerically:

L prompr = 32.18 cm

Comparison:

* Delayed critical height: L, = 31.72 cm
* Prompt critical height: L; ,.ompr = 32.18 cm
* Difference: AL, = 0.46 cm

The liquid must rise an additional 0.46 cm above delayed criticality to reach prompt criticality.
This small difference highlights why delayed neutrons are crucial for reactor control.

Part F

Solution

The presence of people near the trough could significantly impact the critical height.
Physical mechanism:

If the neutron flux is not actually zero at the trough edges (as assumed in our bare reactor
model), people standing nearby would:

1. Act as neutron reflectors: Human bodies contain significant amounts of water (~60% by
mass), which is an excellent neutron moderator and reflector

7

2. Reduce neutron leakage: Neutrons that would have escaped the trough can be scattered
back by the hydrogen in the water content of human tissue

3. Increase system reactivity: Reduced leakage means more neutrons remain in the system to
cause fissions

Impact on critical height:

Critical height would DECREASE

With people nearby acting as reflectors:

* The effective non-leakage probability increases
* Less fissile material is needed to achieve k.rr = 1
* Critical height would be lower than our calculated 31.72 cm

Safety implications:
This is a serious criticality safety concern. The presence of personnel near fissile liquid
containers can:

* Make systems go critical at lower fill levels than predicted by bare reactor calculations
* Create inadvertent criticality accidents
* Necessitate larger safety margins and administrative controls

Historical note: Several criticality accidents have occurred due to personnel proximity act-
ing as reflectors, including incidents during the Manhattan Project. This is why strict distance
requirements and neutron shielding are mandated in facilities handling fissile materials.

Problem 3

Part A
Python Code

import numpy as np

Problem 3A

Using formulas from Fundamental Kinetics Ideas R17 Page 51
DRW = 10 # pcm/step

STEPS = 8

LAMBDA_EFF = 0.1 # hz

ASSUMING AFTER ROD PULL COMPLETE, RHO_DOT = O
RHO_DOT = O
BETA = 640 # pcm

FIND RHO AFTER ROD PULL
rho = DRW *x STEPS # pcm

sur 26.06 * (RHO_DOT + LAMBDA_EFF * rho) / (BETA - rho)

print (f"The Start Up Rate is: {sur:.3f}")

Solution

Given:

* Differential Rod Worth (DRW) = 10 pcm/step
* Number of steps = 8

® eff=(llHZ
* p =0 (after rod pull complete)
* B =640 pcm

Reactivity after rod pull:
p =DRW x STEPS = 10 x 8 = 80 pcm

Start-up rate calculation:

26.06 X (p +Aerr X p) 26.06 x (0+0.1 x 80)

SUR =
B—p 640 — 80

‘ Start Up Rate = 0.373 DPM ‘

Part B

Negative reactivity feedback due to temperature would cause this power level off. I would expect
that the average reactor temperature would have increased from the low power state significantly. I
would also expect xenon concentration would have increased, but would not have been the culprit
in power leveling off.

Part C
Python Code

Problem 3C
import sympy as sm

D_POWER 2.5 # 7

D_T_AVG = 4 # degrees
HEAT_UP_RATE = 0.15 # F/s
ALPHA_F = 10 # pcm/)power

rho_rod = rho

The heat up rate introduces a rho_dot, so SUR becomes O at the
peak power.

alpha_w_sym = sm.Symbol("alpha_w")

rho_dot = alpha_w_sym * HEAT_UP_RATE

rho_net = alpha_w_sym * D_T_AVG + rho_rod + ALPHA_F * D_POWER

At peak power, SUR = 0O, which means: rho_dot + lambda_eff =x*
rho_net = 0

(the numerator must be zero)
equation = rho_dot + LAMBDA_EFF * rho_net

Solve for alpha_w
alpha_w_solution = sm.solve(equation, alpha_w_sym) [0]
alpha_w = float(alpha_w_solution)

print (f"The water temperature reactivity coefficient is:

f} pcm/F")

{alpha_w:

.3

Solution
Given:

* Power change at peak: AP =2.5%

* Average temperature change at peak: AT,,, = 4°F

e Heat-up rate: 7 =0.15 °F/s

* Fuel temperature coefficient: oy = 10 pcm/%power
* Rod reactivity: p,,q = 80 pcm (from Part A)

® eﬁfZOJﬂHZ

At peak power, the start-up rate becomes zero (SUR = 0), but temperature is still rising. This

is the key insight: the numerator of the SUR equation must equal zero:

p—FkifXPM;ZG

The temperature rise creates a reactivity change rate:
p=0,xT=a,x0.15
The net reactivity at the peak is:
Prer = OhATpye + Prog + QAP = 04y, x 4 +80+10 x 2.5
Substituting into the SUR = 0 condition:

o, X 0.1540.1 x (o4, x44+80+25) =0

0.15¢04, +0.400, +10.5=0

0.5504, = —10.5

o = —19.091 pem/°F

Part D
Solution

At final equilibrium when the transient is complete:

10

e Temperature stops changing: T =0=-p =0
* Start-up rate returns to zero: SUR =0
* Net reactivity must be zero: p,e; =0

Since p = 0 at equilibrium, the SUR equation requires:

26.06 x (0—|— leff X pnet)

=0
B — Pret

SUR =

This is satisfied when p,,; = O:

(wafinal + Prod T afPfinal =0

However, without knowing the heat removal characteristics (i.e., the relationship between
power generation and temperature at thermal equilibrium with ambient losses), we cannot solve
for exact values of Tfinq and Pripg.

Qualitative Analysis:

The transient behavior proceeds as follows:

1. At the peak (AT = 4°F, AP =2.5%): SUR = 0, but temperature is still rising at 0.15 °F/s

2. After the peak: Temperature continues to rise = more negative reactivity is added = power
decreases from its maximum

3. At final equilibrium: Temperature plateaus when heat generation equals ambient heat re-
moval

Therefore:

Tfinal >4°F and Pfinal <2.5%

The final power is lower than the peak power, but the final temperature is higher than the peak
temperature. The peak power at 2.5% is a transient maximum, not the steady-state equilibrium
value.

Problem 5
Part A

Solution

The xenon-135 transient for the given power history is solved using the coupled differential equa-
tions for I-135 and Xe-135:

dl
— =M P,
7t 1+ PYito
dX
—r =X — PRMX 4 T + pyxePo

where p is the normalized power (1.0 = 100% power).
Power History:

* 0-5 hours: 100% power

11

5-15 hours: Shutdown

15-50 hours: 100% power
50-80 hours: 40% power
80-100 hours: Shutdown

* 100-150 hours: 100% power

Key features of the xenon transient:

1. Imitial equilibrium (0-5 hours): At 100% power, xenon reactivity = -2900 pcm
2. First shutdown (5-15 hours):

» Xenon burnout stops immediately (no neutron flux)
* 1-135 continues to decay into Xe-135
» Xenon concentration rises, reaching a peak around 8-9 hours after shutdown

* Most negative xenon reactivity occurs
3. Return to full power (t = 15 hours):

* Xenon burnout resumes at full rate
* System returns to equilibrium at 100% power
» Xenon reactivity returns to -2900 pcm

4. Power reduction to 40% (t = 50 hours):

» Reduced burnout rate (40% of full power)

» Xenon concentration increases

* System approaches new equilibrium at 40% power

* Equilibrium xenon significantly higher at lower power

5. Second shutdown (80-100 hours):

» Similar xenon peak behavior to first shutdown
* Starting from 40% power equilibrium
* Peak less pronounced due to lower initial I-135 inventory

6. Return to full power (t = 100 hours):

* Final return to 100% power operation
* System approaches equilibrium xenon level
» Xenon reactivity returns to -2900 pcm

The xenon transient is shown in the figure below (computed using scipy.integrate.odeint):

12

Power History

1.2
1.0 A —
@
2 0.8
&
T 0.6
N
g 04
S
Z 0.2 4
0.0 -
(I) 2‘0 4‘0 6‘0 8‘0 1 (I) 0 12I 0 1 4‘1 0
1-135 Transient
2000
- 1750
o
= 1500 A
©
‘e 1250
[}
€ 1000 A
(e}
o 750
m
:‘ 500 4
2501 1135
[I) ZIO 4|0 6|0 SIO 1 (I) 0 12I 0 1 All 0
Xenon Reactivity Transient
10004 —=- Initial Eq (-2900 pcm)
e
g -2000 -
z
2 —3000 1"~
19)
3
o
< —4000 -
o
C
Q
x
—5000 1
(I) ZIO 4|0 6|0 SIO 1 (I) 0 12I 0 1 éll 0
Time (hours)
Part B
Python Code
from scipy.integrate import odeint
Define ODE system
def xenon_ode(y, t, power_func):
I, X =1y
t_hours = t / 3600
rho = power_func (t_hours)
dI_dt = -lambda_I * I + rho * gamma_I * PO
dX_dt = -lambda_Xe * X - rho * R_max * X + lambda_I * I + rho x

gamma_Xe * PO
return [dI_dt, dX_dt]

Initial conditions at full power equilibrium
I0 = gamma_I * PO / lambda_I

13

X0 = abs(Xe_eq_reactivity) / K

Solve ODE over time period

t_hours = np.linspace(0, 150, 2000)

t_seconds = t_hours * 3600

solution = odeint (xenon_ode, [IO, X0], t_seconds, args=(get_power,))

Find peak after first shutdown (5-15 hours)

X_transient = solutionl[:, 1]
Xe_reactivity = -K * X_transient

mask = (t_hours >= 5) & (t_hours <= 15)
peak_idx = np.argmin(Xe_reactivity[mask])
Solution

After the first shutdown at t = 5 hours (shutdown period: 5-15 hours), xenon-135 concentration
increases due to:

1. Continued decay of I-135 inventory into Xe-135
2. Elimination of xenon burnout (no neutron flux)

The peak occurs when the production rate from I-135 decay equals the Xe-135 decay rate. This
typically happens 8-12 hours after shutdown from full power operation.
Given parameters:

* ¥ =0.057 (I-135 fission yield)

* Yx. = 0.003 (Xe-135 fission yield)

© A =2.87x1077 sec™! (I-135 decay, #; , = 6.7 hr)

* Axe =2.09x 107> sec™! (Xe-135 decay, 7/, = 9.2 hr)
o RMax — 734 % 107 sec™! (full power burnout)

+ K=4.56 pcm-sec™!

* Initial Xe reactivity = -2900 pcm (at 100% power)

Initial equilibrium concentrations (100% power):
At equilibrium with p = 1.0:

R
Iy = % — 1985.12 [arb. units]
1

|Xe reactivity| 2900
Xeq = =
K 4.56
Results from numerical integration:

= 635.96 [arb. units]

‘Time of peak: t = 13.36 hours ‘

\Time after shutdown: At = 8.36 hours \

14

Peak xenon reactivity: — 5261 pcm

Interpretation:

* The xenon reactivity becomes 2361 pcm more negative than equilibrium

» Peak occurs approximately 8.4 hours after shutdown

* This represents a significant reactivity penalty that must be overcome to restart

If reactivity worth is insufficient, the reactor cannot be restarted until xenon decays

At t = 15 hours, when power returns to 100%, xenon has already started to decay from peak

Physical insight:
The time to peak can be estimated analytically. After shutdown, I-135 decays with time con-
stant 1/A; = 10 hours, while Xe-135 decays with 1/Ax, ~ 13 hours. The peak occurs when:

dX
— =NI(t) — Ax.X(t) =0
dt
This typically occurs at t =~ 8 — 12 hours after shutdown for thermal reactors, consistent with
our computed value of 8.36 hours. The reactor restarts at t = 15 hours, which is about 1.6 hours

after the xenon peak, when xenon has already begun to decay.

Problem 6
Part A

Core design that prohibits adequate transfer of power between core regions will increase the likeli-
hood of oscillations. In our notes for ’Simplified Parallel Coupled Reactors’, we summarized this
communication between reactor regions as a parameter g. Designs that have connections between
areas with small g will suffer from worse oscillations. I would presume reactors that have large
aspect ratios would suffer more from oscillations, as it would be harder for different ends of the
reactor core to ’communicate’ with one another.

Part B

These oscillations will cause damage to the fuel and reactor over time. The reactor is presumably
not designed to carry such high power loads in localized regions of the reactor, as opposed to a
balanced power load across the entire reactor core.

Part C

Oscillations might impact core protection or safety analysis by obscuring the actual reactivity or
temperature values inside the reactor core. Without proper care to obtain good measurements, a
reactor operator could not be aware that certain oscillating areas of the core are exceeding temper-
ature and local power limits, all the while the reactor as a whole may appear as if it’s behaving
normally. The result is that while coolant flow in and out of the reactor maintain normal tempera-
ture, oscillating fuel rods may actually be pushing beyond designed limits, and compromising their
cladding, performance, or other important characteristics..

15

