
NUCE 2101: Exam 2

PI: Dane A. Sabo
dane.sabo@pitt.edu

Sunday 9th November, 2025

Problem 2
Cross-Section Data

Two-group cross-section data stored in Python dictionary:

1 import numpy as np

2

3 cross_sections = {

4 ’fast’: {

5 ’D’: 1.4, # Diffusion constant [cm]

6 ’Sigma_a ’: 0.010, # Absorption [cm^-1]

7 ’Sigma_s ’: 0.050, # Scattering from fast to

thermal [cm^-1]

8 ’nu_Sigma_f ’: 0.000, # nu*Sigma_f [cm^-1]

9 ’chi’: 1, # Fission spectrum

10 ’v’: 1.8e7 , # Average group velocity [cm/

sec]

11 },

12 ’thermal ’: {

13 ’D’: 0.35, # Diffusion constant [cm]

14 ’Sigma_a ’: 0.080, # Absorption [cm^-1]

15 ’Sigma_s ’: 0.0, # Scattering from thermal to

fast [cm^-1]

16 ’nu_Sigma_f ’: 0.125, # nu*Sigma_f [cm^-1]

17 ’chi’: 0, # Fission spectrum

18 ’v’: 2.2e5 , # Average group velocity [cm/

sec]

19 }

20 }

21

22 # Extract variables for easy access

23 D_fast = cross_sections[’fast’][’D’]

24 D_thermal = cross_sections[’thermal ’][’D’]

25 Sigma_a_fast = cross_sections[’fast’][’Sigma_a ’]

26 Sigma_a_thermal = cross_sections[’thermal ’][’Sigma_a ’]

27 Sigma_s_fast = cross_sections[’fast’][’Sigma_s ’]

28 nu_Sigma_f_fast = cross_sections[’fast’][’nu_Sigma_f ’]

29 nu_Sigma_f_thermal = cross_sections[’thermal ’][’nu_Sigma_f ’]

Part A

Python Code

1 # Four -Factor Formula: k_inf = epsilon * p * f * eta

2

3 # Fast fission factor: epsilon = 1 (no fast fissions)

4 epsilon = 1.0

5

6 # Resonance escape probability

1

7 p = Sigma_s_fast / (Sigma_a_fast + Sigma_s_fast)

8

9 # Thermal utilization factor: f = 1 (single -region)

10 f = 1.0

11

12 # Reproduction factor

13 eta = nu_Sigma_f_thermal / Sigma_a_thermal

14

15 # Four -Factor Formula

16 k_inf = epsilon * p * f * eta

17

18 print(f"k_inf = epsilon * p * f * eta = {k_inf :.4f}")

Solution

The infinite multiplication factor is calculated using the Four-Factor Formula:

k∞ = ε · p · f ·η

where:

• ε = fast fission factor (neutrons from fast fissions per thermal fission)
• p = resonance escape probability (fraction of fast neutrons reaching thermal energies)
• f = thermal utilization factor (fraction of thermal neutrons absorbed in fuel)
• η = reproduction factor (neutrons produced per thermal neutron absorbed in fuel)

Given cross-sections:

• νΣ f , f ast = 0.000 cm−1 (no fast fissions)
• νΣ f ,thermal = 0.125 cm−1

• Σa, f ast = 0.010 cm−1

• Σa,thermal = 0.080 cm−1

• Σs, f ast = 0.050 cm−1 (scattering from fast to thermal)

Calculating each factor:
1. Fast fission factor:

ε = 1.0000 (no fast fissions since νΣ f , f ast = 0)

2. Resonance escape probability:

p =
Σs, f ast

Σa, f ast +Σs, f ast
=

0.050
0.010+0.050

=
0.050
0.060

= 0.8333

3. Thermal utilization factor:

f = 1.0000 (single-region, homogeneous medium)

2

4. Reproduction factor:

η =
νΣ f ,thermal

Σa,thermal
=

0.125
0.080

= 1.5625

Final calculation:

k∞ = ε · p · f ·η = 1.0000×0.8333×1.0000×1.5625 = 1.3021

k∞ = 1.302

Part B

Python Code

1 # Calculate diffusion lengths

2 # L^2 _fast = D_fast / Sigma_total_fast

3 # where Sigma_total_fast = Sigma_a_fast + Sigma_s_fast (removal from

fast group)

4 Sigma_total_fast = Sigma_a_fast + Sigma_s_fast

5 L_squared_fast = D_fast / Sigma_total_fast

6

7 # L^2_th = D_th / Sigma_a_th

8 L_squared_th = D_thermal / Sigma_a_thermal

9

10 L_fast = np.sqrt(L_squared_fast)

11 L_thermal = np.sqrt(L_squared_th)

12

13 print(f"L_fast = {L_fast :.3f} cm")

14 print(f"L_thermal = {L_thermal :.3f} cm")

Solution

The diffusion lengths for each group are calculated as:

L2 =
D

Σremoval

Fast Group:
The removal cross-section includes both absorption and scattering out:

Σremoval, f ast = Σa, f ast +Σs, f ast = 0.010+0.050 = 0.060 cm−1

L2
f ast =

D f ast

Σremoval, f ast
=

1.4
0.060

= 23.333 cm2

L f ast =
√

23.333 = 4.830 cm

Thermal Group:

3

For the thermal group (lowest energy group), only absorption removes neutrons:

L2
thermal =

Dthermal

Σa,thermal
=

0.35
0.080

= 4.375 cm2

Lthermal =
√

4.375 = 2.092 cm

L f ast = 4.830 cm, Lthermal = 2.092 cm

Part C

Solution

For a rectangular solid geometry (box) with dimensions Lx, Ly, and Lz, where the neutron flux goes
to zero at the edges (bare reactor boundary condition), the geometric buckling is:

B2 =

(
π

Lx

)2

+

(
π

Ly

)2

+

(
π

Lz

)2

This expression comes from solving the neutron diffusion equation with boundary conditions
φ = 0 at the reactor boundaries. The solution for the fundamental mode has the form:

φ(x,y,z) = Asin
(

πx
Lx

)
sin

(
πy
Ly

)
sin

(
πz
Lz

)
The geometric buckling is the eigenvalue associated with this spatial mode, representing the

curvature of the neutron flux distribution. Each term corresponds to the buckling in one spatial
dimension:

• B2
x =

(
π

Lx

)2
- buckling in x-direction

• B2
y =

(
π

Ly

)2
- buckling in y-direction

• B2
z =

(
π

Lz

)2
- buckling in z-direction

The total geometric buckling is the sum of the directional components.
Note: The derivation of this formula from the diffusion equation was completed in Exam 1.

The proof is left to that work.

Part D

Python Code

1 import sympy as sm

2

3 # Given dimensions

4 L_x_val = 150 # cm (width)

5 L_y_val = 200 # cm (length)

6

4

7 # Define L_z (height) as unknown

8 L_z_sym = sm.Symbol(’L_z’, positive=True)

9

10 # Buckling with unknown height

11 B_sq = (sm.pi / L_x_val)**2 + (sm.pi / L_y_val)**2 + (sm.pi /

L_z_sym)**2

12

13 # Criticality equation: k_inf = (L^2_fast * B^2 + 1)(L^2 _thermal * B

^2 + 1)

14 criticality_eq = (L_squared_fast * B_sq + 1) * (L_squared_th * B_sq

+ 1) - k_inf

15

16 # Solve for L_z

17 L_z_solutions = sm.solve(criticality_eq , L_z_sym)

18 L_z_critical = float([sol for sol in L_z_solutions if sol.is_real

and sol > 0][0])

19

20 print(f"Critical height L_z = {L_z_critical :.2f} cm")

Solution

For a trough with width Lx = 150 cm and length Ly = 200 cm, we need to find the critical height
Lz where ke f f = 1.

Criticality condition using two-group theory:
At criticality, the effective multiplication factor equals unity:

ke f f =
k∞

(L2
f astB

2 +1)(L2
thermalB

2 +1)
= 1

Rearranging:
(L2

f astB
2 +1)(L2

thermalB
2 +1) = k∞

The geometric buckling for the rectangular trough is:

B2 =

(
π

Lx

)2

+

(
π

Ly

)2

+

(
π

Lz

)2

Known values:

• k∞ = 1.3021
• L2

f ast = 23.333 cm2

• L2
thermal = 4.375 cm2

• Lx = 150 cm
• Ly = 200 cm

Calculation:

5

Substituting the buckling expression:

B2 =
(

π

150

)2
+
(

π

200

)2
+

(
π

Lz

)2

B2 = 4.386×10−4 +2.467×10−4 +
π2

L2
z

Substituting into the criticality equation:(
23.333

(
6.853×10−4 +

π2

L2
z

)
+1

)(
4.375

(
6.853×10−4 +

π2

L2
z

)
+1

)
= 1.3021

Solving this equation numerically (or symbolically with SymPy) yields:

Lz = 31.72 cm

Verification:

• B2 = 0.010496 cm−2

• ke f f = 1.000000 ✓

The trough would become critical at a height of approximately 31.7 cm.

Part E

Python Code

1 # Prompt criticality

2 BETA = 640e-5 # Delayed neutron fraction

3

4 # Prompt critical k_eff = 1/(1- beta)

5 k_eff_prompt = 1 / (1 - BETA)

6

7 # Solve for height at prompt criticality

8 L_z_prompt_sym = sm.Symbol(’L_z_prompt ’, positive=True)

9 B_sq_prompt = (sm.pi / L_x_val)**2 + (sm.pi / L_y_val)**2 + (sm.pi /

L_z_prompt_sym)**2

10

11 prompt_crit_eq = (L_squared_fast * B_sq_prompt + 1) * \

12 (L_squared_th * B_sq_prompt + 1) - k_inf /

k_eff_prompt

13

14 L_z_prompt_solutions = sm.solve(prompt_crit_eq , L_z_prompt_sym)

15 L_z_prompt = float ([sol for sol in L_z_prompt_solutions

16 if sol.is_real and sol > 0][0])

17

18 print(f"Prompt critical height L_z = {L_z_prompt :.2f} cm")

6

Solution

Prompt criticality occurs when the reactor can sustain a chain reaction on prompt neutrons alone,
without relying on delayed neutrons. This happens when:

ke f f =
1

1−β

where β is the delayed neutron fraction.
Given:

• β = 640×10−5 = 0.00640

Prompt critical condition:

ke f f ,prompt =
1

1−0.00640
=

1
0.99360

= 1.00644

Using the same two-group criticality equation from Part D, but now solving for the height
where ke f f = 1.00644:

k∞

(L2
f astB

2 +1)(L2
thermalB

2 +1)
= 1.00644

Rearranging:

(L2
f astB

2 +1)(L2
thermalB

2 +1) =
k∞

ke f f ,prompt
=

1.3021
1.00644

= 1.2938

With B2 =
(

π

150

)2
+
(

π

200

)2
+
(

π

Lz

)2
, solving numerically:

Lz,prompt = 32.18 cm

Comparison:

• Delayed critical height: Lz = 31.72 cm
• Prompt critical height: Lz,prompt = 32.18 cm
• Difference: ∆Lz = 0.46 cm

The liquid must rise an additional 0.46 cm above delayed criticality to reach prompt criticality.
This small difference highlights why delayed neutrons are crucial for reactor control.

Part F

Solution

The presence of people near the trough could significantly impact the critical height.
Physical mechanism:
If the neutron flux is not actually zero at the trough edges (as assumed in our bare reactor

model), people standing nearby would:

1. Act as neutron reflectors: Human bodies contain significant amounts of water (∼60% by
mass), which is an excellent neutron moderator and reflector

7

2. Reduce neutron leakage: Neutrons that would have escaped the trough can be scattered
back by the hydrogen in the water content of human tissue

3. Increase system reactivity: Reduced leakage means more neutrons remain in the system to
cause fissions

Impact on critical height:

Critical height would DECREASE

With people nearby acting as reflectors:

• The effective non-leakage probability increases
• Less fissile material is needed to achieve ke f f = 1
• Critical height would be lower than our calculated 31.72 cm

Safety implications:
This is a serious criticality safety concern. The presence of personnel near fissile liquid

containers can:

• Make systems go critical at lower fill levels than predicted by bare reactor calculations
• Create inadvertent criticality accidents
• Necessitate larger safety margins and administrative controls

Historical note: Several criticality accidents have occurred due to personnel proximity act-
ing as reflectors, including incidents during the Manhattan Project. This is why strict distance
requirements and neutron shielding are mandated in facilities handling fissile materials.

Problem 3
Part A

Python Code

1 import numpy as np

2

3 # Problem 3A

4 ## Using formulas from Fundamental Kinetics Ideas R17 Page 51

5 DRW = 10 # pcm/step

6 STEPS = 8

7 LAMBDA_EFF = 0.1 # hz

8

9 # ASSUMING AFTER ROD PULL COMPLETE , RHO_DOT = 0

10 RHO_DOT = 0

11 BETA = 640 # pcm

12

13 # FIND RHO AFTER ROD PULL

14 rho = DRW * STEPS # pcm

15

16 sur = 26.06 * (RHO_DOT + LAMBDA_EFF * rho) / (BETA - rho)

17

18 print(f"The Start Up Rate is: {sur:.3f}")

8

Solution

Given:

• Differential Rod Worth (DRW) = 10 pcm/step
• Number of steps = 8
• λe f f = 0.1 Hz
• ρ̇ = 0 (after rod pull complete)
• β = 640 pcm

Reactivity after rod pull:

ρ = DRW×STEPS = 10×8 = 80 pcm

Start-up rate calculation:

SUR =
26.06× (ρ̇ +λe f f ×ρ)

β −ρ
=

26.06× (0+0.1×80)
640−80

Start Up Rate = 0.373 DPM

Part B

Negative reactivity feedback due to temperature would cause this power level off. I would expect
that the average reactor temperature would have increased from the low power state significantly. I
would also expect xenon concentration would have increased, but would not have been the culprit
in power leveling off.

Part C

Python Code

1 # Problem 3C

2 import sympy as sm

3

4 D_POWER = 2.5 # %

5 D_T_AVG = 4 # degrees

6 HEAT_UP_RATE = 0.15 # F/s

7 ALPHA_F = 10 # pcm/% power

8

9 rho_rod = rho

10

11 # The heat up rate introduces a rho_dot , so SUR becomes 0 at the

peak power.

12 alpha_w_sym = sm.Symbol("alpha_w")

13 rho_dot = alpha_w_sym * HEAT_UP_RATE

14 rho_net = alpha_w_sym * D_T_AVG + rho_rod + ALPHA_F * D_POWER

15

16 # At peak power , SUR = 0, which means: rho_dot + lambda_eff *

rho_net = 0

9

17 # (the numerator must be zero)

18 equation = rho_dot + LAMBDA_EFF * rho_net

19

20 # Solve for alpha_w

21 alpha_w_solution = sm.solve(equation , alpha_w_sym)[0]

22 alpha_w = float(alpha_w_solution)

23

24 print(f"The water temperature reactivity coefficient is: {alpha_w :.3

f} pcm/F")

Solution

Given:

• Power change at peak: ∆P = 2.5%
• Average temperature change at peak: ∆Tavg = 4◦F
• Heat-up rate: Ṫ = 0.15 ◦F/s
• Fuel temperature coefficient: α f = 10 pcm/%power
• Rod reactivity: ρrod = 80 pcm (from Part A)
• λe f f = 0.1 Hz

At peak power, the start-up rate becomes zero (SUR = 0), but temperature is still rising. This
is the key insight: the numerator of the SUR equation must equal zero:

ρ̇ +λe f f ×ρnet = 0

The temperature rise creates a reactivity change rate:

ρ̇ = αw × Ṫ = αw ×0.15

The net reactivity at the peak is:

ρnet = αw∆Tavg +ρrod +α f ∆P = αw ×4+80+10×2.5

Substituting into the SUR = 0 condition:

αw ×0.15+0.1× (αw ×4+80+25) = 0

0.15αw +0.4αw +10.5 = 0

0.55αw =−10.5

αw =−19.091 pcm/◦F

Part D

Solution

At final equilibrium when the transient is complete:

10

• Temperature stops changing: Ṫ = 0 ⇒ ρ̇ = 0
• Start-up rate returns to zero: SUR = 0
• Net reactivity must be zero: ρnet = 0

Since ρ̇ = 0 at equilibrium, the SUR equation requires:

SUR =
26.06× (0+λe f f ×ρnet)

β −ρnet
= 0

This is satisfied when ρnet = 0:

αwTf inal +ρrod +α f Pf inal = 0

However, without knowing the heat removal characteristics (i.e., the relationship between
power generation and temperature at thermal equilibrium with ambient losses), we cannot solve
for exact values of Tf inal and Pf inal .

Qualitative Analysis:
The transient behavior proceeds as follows:

1. At the peak (∆T = 4◦F, ∆P = 2.5%): SUR = 0, but temperature is still rising at 0.15 ◦F/s
2. After the peak: Temperature continues to rise ⇒ more negative reactivity is added ⇒ power

decreases from its maximum
3. At final equilibrium: Temperature plateaus when heat generation equals ambient heat re-

moval

Therefore:
Tf inal > 4◦F and Pf inal < 2.5%

The final power is lower than the peak power, but the final temperature is higher than the peak
temperature. The peak power at 2.5% is a transient maximum, not the steady-state equilibrium
value.

Problem 5
Part A

Solution

The xenon-135 transient for the given power history is solved using the coupled differential equa-
tions for I-135 and Xe-135:

dI
dt

=−λII +ργIP0

dX
dt

=−λXeX −ρRMaxX +λII +ργXeP0

where ρ is the normalized power (1.0 = 100% power).
Power History:

• 0-5 hours: 100% power

11

• 5-15 hours: Shutdown
• 15-50 hours: 100% power
• 50-80 hours: 40% power
• 80-100 hours: Shutdown
• 100-150 hours: 100% power

Key features of the xenon transient:

1. Initial equilibrium (0-5 hours): At 100% power, xenon reactivity = -2900 pcm
2. First shutdown (5-15 hours):

• Xenon burnout stops immediately (no neutron flux)
• I-135 continues to decay into Xe-135
• Xenon concentration rises, reaching a peak around 8-9 hours after shutdown
• Most negative xenon reactivity occurs

3. Return to full power (t = 15 hours):
• Xenon burnout resumes at full rate
• System returns to equilibrium at 100% power
• Xenon reactivity returns to -2900 pcm

4. Power reduction to 40% (t = 50 hours):
• Reduced burnout rate (40% of full power)
• Xenon concentration increases
• System approaches new equilibrium at 40% power
• Equilibrium xenon significantly higher at lower power

5. Second shutdown (80-100 hours):
• Similar xenon peak behavior to first shutdown
• Starting from 40% power equilibrium
• Peak less pronounced due to lower initial I-135 inventory

6. Return to full power (t = 100 hours):
• Final return to 100% power operation
• System approaches equilibrium xenon level
• Xenon reactivity returns to -2900 pcm

The xenon transient is shown in the figure below (computed using scipy.integrate.odeint):

12

Part B

Python Code

1 from scipy.integrate import odeint

2

3 # Define ODE system

4 def xenon_ode(y, t, power_func):

5 I, X = y

6 t_hours = t / 3600

7 rho = power_func(t_hours)

8

9 dI_dt = -lambda_I * I + rho * gamma_I * P0

10 dX_dt = -lambda_Xe * X - rho * R_max * X + lambda_I * I + rho *

gamma_Xe * P0

11

12 return [dI_dt , dX_dt]

13

14 # Initial conditions at full power equilibrium

15 I0 = gamma_I * P0 / lambda_I

13

16 X0 = abs(Xe_eq_reactivity) / K

17

18 # Solve ODE over time period

19 t_hours = np.linspace(0, 150, 2000)

20 t_seconds = t_hours * 3600

21 solution = odeint(xenon_ode , [I0, X0], t_seconds , args=(get_power ,))

22

23 # Find peak after first shutdown (5-15 hours)

24 X_transient = solution[:, 1]

25 Xe_reactivity = -K * X_transient

26 mask = (t_hours >= 5) & (t_hours <= 15)

27 peak_idx = np.argmin(Xe_reactivity[mask])

Solution

After the first shutdown at t = 5 hours (shutdown period: 5-15 hours), xenon-135 concentration
increases due to:

1. Continued decay of I-135 inventory into Xe-135
2. Elimination of xenon burnout (no neutron flux)

The peak occurs when the production rate from I-135 decay equals the Xe-135 decay rate. This
typically happens 8-12 hours after shutdown from full power operation.

Given parameters:

• γI = 0.057 (I-135 fission yield)
• γXe = 0.003 (Xe-135 fission yield)
• λI = 2.87×10−5 sec−1 (I-135 decay, t1/2 = 6.7 hr)
• λXe = 2.09×10−5 sec−1 (Xe-135 decay, t1/2 = 9.2 hr)
• RMax = 7.34×10−5 sec−1 (full power burnout)
• K = 4.56 pcm·sec−1

• Initial Xe reactivity = -2900 pcm (at 100% power)

Initial equilibrium concentrations (100% power):
At equilibrium with ρ = 1.0:

Ieq =
γIP0

λI
= 1985.12 [arb. units]

Xeq =
|Xe reactivity|

K
=

2900
4.56

= 635.96 [arb. units]

Results from numerical integration:

Time of peak: t = 13.36 hours

Time after shutdown: ∆t = 8.36 hours

14

Peak xenon reactivity: −5261 pcm

Interpretation:

• The xenon reactivity becomes 2361 pcm more negative than equilibrium
• Peak occurs approximately 8.4 hours after shutdown
• This represents a significant reactivity penalty that must be overcome to restart
• If reactivity worth is insufficient, the reactor cannot be restarted until xenon decays
• At t = 15 hours, when power returns to 100%, xenon has already started to decay from peak

Physical insight:
The time to peak can be estimated analytically. After shutdown, I-135 decays with time con-

stant 1/λI ≈ 10 hours, while Xe-135 decays with 1/λXe ≈ 13 hours. The peak occurs when:

dX
dt

= λII(t)−λXeX(t) = 0

This typically occurs at t ≈ 8− 12 hours after shutdown for thermal reactors, consistent with
our computed value of 8.36 hours. The reactor restarts at t = 15 hours, which is about 1.6 hours
after the xenon peak, when xenon has already begun to decay.

Problem 6
Part A

Core design that prohibits adequate transfer of power between core regions will increase the likeli-
hood of oscillations. In our notes for ’Simplified Parallel Coupled Reactors’, we summarized this
communication between reactor regions as a parameter g. Designs that have connections between
areas with small g will suffer from worse oscillations. I would presume reactors that have large
aspect ratios would suffer more from oscillations, as it would be harder for different ends of the
reactor core to ’communicate’ with one another.

Part B

These oscillations will cause damage to the fuel and reactor over time. The reactor is presumably
not designed to carry such high power loads in localized regions of the reactor, as opposed to a
balanced power load across the entire reactor core.

Part C

Oscillations might impact core protection or safety analysis by obscuring the actual reactivity or
temperature values inside the reactor core. Without proper care to obtain good measurements, a
reactor operator could not be aware that certain oscillating areas of the core are exceeding temper-
ature and local power limits, all the while the reactor as a whole may appear as if it’s behaving
normally. The result is that while coolant flow in and out of the reactor maintain normal tempera-
ture, oscillating fuel rods may actually be pushing beyond designed limits, and compromising their
cladding, performance, or other important characteristics..

15

