vault backup: 2024-11-18 13:18:54
This commit is contained in:
parent
90dc5a4a5b
commit
fd1038ab3a
@ -0,0 +1,15 @@
|
||||
Lorenz system is dissapative. This means:
|
||||
- Volume in phase space contracts with flow?
|
||||
This introduces some questions... How do volumes evolve?
|
||||
|
||||
Suppose a surface $S(t)$ encloses volume $V(t)$, with normal vectors pointing away from the surface ($\vec{n}$).
|
||||
|
||||
A trajectory starts on S. let them evolve for $dt$. With a flux vector $\vec{f}$, we have
|
||||
- $\vec f \cdot \vec n$ - normal, outward component of velocity
|
||||
In $dt$ time, $dA$ sweeps out a volume.
|
||||
|
||||
Volume: $(\vec f \cdot \vec n dt)dA$
|
||||
$$V(t+dt) = V(t) + \int_S (\vec f \cdot \vec n dt)dA $$
|
||||
$$\dot{V} = \int_S (\vec f \cdot \vec n)dA $$
|
||||
Now we can apply the divergence theorem:
|
||||
$$\dot{V} = \int_V (\nabla \cdot \vec f )dV $$
|
||||
Loading…
x
Reference in New Issue
Block a user